DOI QR코드

DOI QR Code

ITO-Ag NW기반 투명 양자점 발광 다이오드

ITO-Ag NW based Transparent Quantum Dot Light Emitting Diode

  • 강태욱 (부경대학교 LED 공학협동과정) ;
  • 김효준 (부경대학교 융합디스플레이공학과) ;
  • 정용석 (부경대학교 융합디스플레이공학과) ;
  • 김종수 (부경대학교 LED 공학협동과정)
  • Kang, Taewook (Interdisciplinary Program of LED and Solid State Lighting Engineering, Pukyong National University) ;
  • Kim, Hyojun (Department of Display Science and Engineering, Pukyong National University) ;
  • Jeong, Yongseok (Department of Display Science and Engineering, Pukyong National University) ;
  • Kim, Jongsu (Interdisciplinary Program of LED and Solid State Lighting Engineering, Pukyong National University)
  • 투고 : 2020.06.18
  • 심사 : 2020.07.29
  • 발행 : 2020.08.27

초록

A transparent quantum dot (QD)-based light-emitting diode (LED) with silver nanowire (Ag NW) and indium-tin oxide (ITO) hybrid electrode is demonstrated. The device consists of an Ag NW-ITO hybrid cathode (-), zinc oxide, poly (9-vinylcarbazole) (PVK), CdSe/CdZnS QD, tungsten trioxide, and ITO anode (+). The device shows pure green-color emission peaking at 548 nm, with a narrow spectral half width of 43 nm. Devices with hybrid cathodes show better performances, including higher luminance with higher current density, and lower threshold voltage of 5 V, compared with the reference device with a pure Ag NW cathode. It is worth noting that our transparent device with hybrid cathode exhibits a lifetime 9,300 seconds longer than that of a device with Ag NW cathode. This is the reason that the ITO overlayer can protect against oxidization of Ag NW, and the Ag NW underlayer can reduce the junction resistance and spread the current efficiently. The hybrid cathode for our transparent QD LED can applicable to other quantum structure-based optical devices.

키워드

참고문헌

  1. R. S. Deshpande, V. Bulovic and S. R. Forrest, Appl. Phys. Lett., 75, 888 (1999). https://doi.org/10.1063/1.124250
  2. J. H. Wendorff, T. Christ, B. Gliisen, A. Greiner, A. Kettner, R. Sander, V. Stumpflen and V. V. Tsukruk, Adv. Mater., 9, 49 (1997).
  3. W. Lu, I. Kamiya, M. Ichida and H. Ando, Appl. Phys. Lett., 95, 083102 (2009). https://doi.org/10.1063/1.3213349
  4. D. Bera, L. Qian, T. K. Tseng and P. H. Holloway, Materials, 3, 2260 (2010). https://doi.org/10.3390/ma3042260
  5. Y. Yang, C. Zhang, X. Qu, W. Zhang, M. Marus, B. Xu, K. Wang and X. W. Sun, IEEE Trans. Nanotechnol., 18, 220 (2019). https://doi.org/10.1109/tnano.2019.2891242
  6. Q. Chen, Y. Yan, X. Wu, X. Wang, G. Zhang, J. Chen, H. Chen and T. Guo, J. Mater. Chem. C, 8, 1280 (2020). https://doi.org/10.1039/c9tc06088j
  7. D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov and J. C. Hummelen, J. Appl. Phys., 93, 3376 (2003). https://doi.org/10.1063/1.1545162
  8. E. Kim, Y. Xia and G. M. Whitesides, Nature, 376, 581 (1995). https://doi.org/10.1038/376581a0
  9. A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed., Chap. 1, John Wiley & Son, New York (1997)
  10. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovic, Nano Lett., 9, 2532 (2009). https://doi.org/10.1021/nl9002969
  11. K. H. Ok, J. W. Kim, S. R. Park, Y. M. Kim, C. J. Lee, S. J. Hong, M. G. Kwak, N. Kim, C. J. Han and J. W. Kim, Sci. Rep., 5, 9464 (2015). https://doi.org/10.1038/srep09464
  12. S. Y. Kim, J. L. Lee, K. B. Kim and Y. H. Tak, J. Appl. Phys., 95, 2560 (2004). https://doi.org/10.1063/1.1635995
  13. C. C. Wu, C. I. Wu, J. C. Sturm and A. Kahn, Appl. Phys. Lett., 70, 1348 (1997). https://doi.org/10.1063/1.118575