DOI QR코드

DOI QR Code

Crystal Structure Refinement and Persistent Luminescence Properties of Lu3Al5-xGaxO12:Ce3+,Cr3+ Phosphors

Lu3Al5-xGaxO12:Ce3+,Cr3+ 형광체의 결정구조 분석 및 잔광성 발광 특성

  • Kim, Ji-Won (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Yeong-Jin (Department of Advanced Materials Engineering, Kyonggi University)
  • 김지원 (경기대학교 신소재 공학과) ;
  • 김영진 (경기대학교 신소재 공학과)
  • Received : 2020.07.01
  • Accepted : 2020.07.25
  • Published : 2020.08.27

Abstract

Lu3Al5-xGaxO12:Ce3+,Cr3+ powders are prepared using a solid-state reaction method. To determine the crystal structure, Rietveld refinement is performed. The results indicate that Ga3+ ions preferentially occupied tetrahedral rather than octahedral sites. The lattice constant linearly increases, obeying Vegard's law, despite the strong preference of Ga3+ for the tetrahedral sites. Increasing x led to a blue-shift of the Ce3+ emission band in the green region and a change in the emission intensity. Persistent luminescence is observed from the powders prepared with x = 2-3, occurring through a trapping and detrapping process between Ce3+ and Cr3+ ions. The longest persistent luminescence is achieved for x = 2; its lifetime is at least 30 min. The findings are explained using crystal structure refinement, crystal field splitting, optical band gap, and electron trapping mechanism.

Keywords

References

  1. M. Saito, N. Adachi and H. Kondo, Opt. Express, 15, 1621 (2007). https://doi.org/10.1364/OE.15.001621
  2. J. Xu, S. Tanabe, A. D. Sontakke and J. Ueda, Appl. Phys. Lett., 107, 081903 (2015). https://doi.org/10.1063/1.4929495
  3. X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu and Y. Hu, Adv. Opt. Mater., 6, 1701161 (2018). https://doi.org/10.1002/adom.201701161
  4. H. Li, S. Yin, Y. Wang and T. Sato, RSC Adv., 2, 3234 (2012). https://doi.org/10.1039/c2ra20278f
  5. H. Sun, L. Pan, X. Piao and Z. Sun, J. Colloid Interface Sci., 416, 81 (2014). https://doi.org/10.1016/j.jcis.2013.10.050
  6. T. Matsuzawa, Y. Aoki, N. Takeuchi and Y. Murayama, J. Electrochem. Soc., 143, 2670 (1996). https://doi.org/10.1149/1.1837067
  7. M. Zheng, X. Chen, B. Lei, Y. Xiao, R. Liu, H. Zhang, H. Dong, Y. Liu and X. Liu, ECS Solid State Lett., 2, R19 (2013). https://doi.org/10.1149/2.008306ssl
  8. H. He, R. Fu, X. Song, R. Li, Z. Pan, X. Zhao, Z. Deng and Y. Cao, J. Electrochem. Soc., 157, J69 (2010). https://doi.org/10.1149/1.3276091
  9. Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng and J. R. Qiu, J. Mater. Chem. C, 2, 2019 (2014). https://doi.org/10.1039/c3tc32075h
  10. N. Yu, F. Liu, X. Li and Z. Pan, Appl. Phys. Lett., 95, 231110 (2009). https://doi.org/10.1063/1.3272672
  11. A. A. Setlur and A. M. Srivastava, Opt. Mater., 29, 1647 (2007). https://doi.org/10.1016/j.optmat.2006.08.010
  12. P. Schlotter, R. Schmidt and J. Schneider, Appl. Phys. A: Mater. Sci. Process., 64, 417 (1997). https://doi.org/10.1007/s003390050498
  13. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers, p. 216, Springer, Berlin (1997).
  14. W. W. Holloway and M. Kestigian, J. Opt. Soc. Am., 59, 60 (1969). https://doi.org/10.1364/JOSA.59.000060
  15. J. Xu, J. Ueda and S. Tanabe, J. Mater. Chem. C, 4, 4380 (2016). https://doi.org/10.1039/C6TC00802J
  16. J. Ueda, K. Kuroishi and S. Tanabe, Appl. Phys. Lett., 104, 101904 (2014). https://doi.org/10.1063/1.4868138
  17. J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishia and S. Tanabea, J. Mater. Chem. C, 3, 5642 (2015). https://doi.org/10.1039/C5TC00546A
  18. J. Xu, J. Ueda, K. Kuroishi and S. Tanabe, Scr. Mater., 102, 47 (2015). https://doi.org/10.1016/j.scriptamat.2015.01.029
  19. V. Boiko, J. Zeler, M. Markowska, Z. Dai, A. Gerus, P. Bolek, E. Zych and D. Hreniak, J. Rare Earth, 37, 1200 (2019). https://doi.org/10.1016/j.jre.2019.03.010
  20. J. Ueda, S. Miyano and S. Tanabe, ACS Appl. Mater. Interfaces, 10, 20652 (2018). https://doi.org/10.1021/acsami.8b02758
  21. L. Yuan, Y. Jin, D. Zhu, Z. Mou, G. Xie and Y. Hu, ACS Sustainable Chem. Eng., 8, 6543 (2020). https://doi.org/10.1021/acssuschemeng.0c01377
  22. V. Laguta, Y. Zorenko, V. Gorbenko, A. Iskaliyeva, Y. Zagorodniy, O. Sidletskiy, P. Bilski, A. Twardak and M. Nikl, J. Phys. Chem. C, 120, 24400 (2016). https://doi.org/10.1021/acs.jpcc.6b08593
  23. Z. Song, Z. Xia and Q. Liu, J. Phys. Chem. C, 122, 3567 (2018). https://doi.org/10.1021/acs.jpcc.7b12826
  24. K. Kamada, T. Endo and K. Tsutumi, Cryst. Growth Des., 11, 4484 (2011). https://doi.org/10.1021/cg200694a
  25. I. I. Vrubel, R. G. Polozkov, I. A. Shelykh, V. M. Khanin, P. A. Rodnyi and C. R. Ronda, Cryst. Growth Des., 17, 1863 (2017). https://doi.org/10.1021/acs.cgd.6b01822
  26. W. Ahn and Y. J. Kim, Ceram. Int., 43, S412 (2017). https://doi.org/10.1016/j.ceramint.2017.05.221
  27. J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang and B. Du, J. Eur. Ceram. Soc., 38, 343 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.07.036
  28. M. Rathaiah, M. Kucera, P. Prusa, A. Beitlerova and M. Nikl, Opt. Mater., 91, 321 (2019). https://doi.org/10.1016/j.optmat.2019.03.038
  29. J. Kim and Y. J. Kim, J. Korean Ceram. Soc., 57, 85 (2020). https://doi.org/10.1007/s43207-019-00007-x
  30. J. Kim, C. K. Lee and Y. J. Kim, Opt. Mater., 104, 109944 (2020). https://doi.org/10.1016/j.optmat.2020.109944
  31. Y.-N. Xu and W. Y. Ching, Phys. Rev. B, 59, 10530 (1999). https://doi.org/10.1103/physrevb.59.10530
  32. M. Marezio, J. P. Remeika and P. D. Dernier, Acta Crystallogr. B, 24, 1670 (1968). https://doi.org/10.1107/S0567740868004826
  33. A. Nakatsuka, A. Yoshiasa and T. Yamanaka, Acta Crystallogr. B, 55, 266 (1999). https://doi.org/10.1107/S0108768198012567
  34. R. G. Burns, Geochim. Cosmochim. Acta, 39, 857 (1975). https://doi.org/10.1016/0016-7037(75)90031-9