Acknowledgement
이 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다. (No. 20182010106460)
References
- American Society of Heating, Ventilating, and Air Conditioning Engineers (ASHRAE). (2002). Guideline 14-2002 Measurement of Energy and Demand Savings, Technical Report. American Society of Heating, Ventilating, and Air Conditioning Engineers. Atlanta, GA, USA
- Caicedo, D., Pandharipande, A., & Willems, F. M. J. (2014). Daylight-adaptive lighting control using light sensor calibration prior-information. Energy and Buildings, 73, 105-114. https://doi.org/10.1016/j.enbuild.2014.01.022
- Bishop, C. (2006). Pattern Recognition and Machine Learning. New York. Springer-Verlag New York. 225-256
- Di Laura, D. L., Houser, K. W., Mistrick, R. G., & Steffy, G. R. (2011). The lighting handbook: reference and application, New York, Illuminating Engineering Society of North America.
- Di Louie, C. (2008). Light control handbook. New York. Illuminating Engineering Society of North America. 161-204.
- Haq, M., Hassan, M., Abdullah, H., Rahman, H., Abdullah, M., Hussin, F., & Said, D. (2014). A review on lighting control technologies in commercial buildings. Renewable and Sustainable Energy Reviews, 33, 268-279. https://doi.org/10.1016/j.rser.2014.01.090
- Jakubiec, J A., & Reinhart, C. F. (2011). DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus, Proceedings of building simulation, 20(11), 2202-2209.
- Ji, Y., Ok, K., & Kwon, D. (2019). Environmental monitoring system for intelligent buildings using IoT. Korea computer congress 2019, 345-346.
- Korea Meteorological Administration (KMA). (2020). ASOS(Automated synoptic observing system). Retrieved May 11, from https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36
- Koroglu, M. T., & Passino., K. M. (2014). Illumination Balancing Algorithm for Smart Lights. IEEE Transactions on Control Systems Technology, 22(2), 557-567. https://doi.org/10.1109/TCST.2013.2258399
- Mahdavi, A., Mathew, P., Kumar, S., Hartkopf, V., & Loftness, V. (2013). Effects of lighting, zoning, and control strategies on energy use in commercial buildings. Journal of the Illuminating Engineering Society, 24, 25-35. https://doi.org/10.1080/00994480.1995.10748093
- Pandharipande, A., & Caicedo, D. (2011). Daylight integrated illumination control of LED systems based on enhanced presence sensing. Energy and Buildings, 43(4), 944-950. https://doi.org/10.1016/j.enbuild.2010.12.018
- Perez, R., Seals, R., & Michalsky, J. (1993). All-weather model for sky luminance distribution-Preliminary configuration and validation. Solar Energy, 50(3), 235-245. https://doi.org/10.1016/0038-092X(93)90017-I
- Solemma LLC. (2020). DIVA. Retrieved May 11, 2020, from https://solemma.com/Diva.html
- Tran, D., & Tan, Y. K. (2014). Sensorless illumination control of a networked LED-lighting system using feedforward neural network. IEEE transactions on industrial electronics, 61(4), 2113-2121 https://doi.org/10.1109/TIE.2013.2266084
- Ward, G., & Shakespeare, R. (1998). Rendering with RADIANCE, The Art and Science of Lighting Visualization. San Francisco, CA, USA. Morgan Kaufmann Publishers.
- Watanabe, T., Urano, Y., & Hayashi, T. (1983). Procedures for separating direct and difuse insolation on a horizontal surface and prediction of insolation on tilted surfaces. Transactions of the Architectural Institute of Japan, 330, 96-108. https://doi.org/10.3130/aijsaxx.330.0_96
- Wen, Y. J., & Agogino, A. M. (2008). Wireless networked lighting systems for optimizing energy savings and user satisfaction. 2008 IEEE Wireless Hive Networks Conference, Austin, TX. 1-7.