Acknowledgement
This project is jointly supported by the National Natural Science Foundation of China with Grant Numbers 51678278 and 51278226.
References
- Alireza, G., Adel, A. and Armin, J. (2018), "Accelerated cuckoo optimization algorithm for capacitated vehicle routing problem in competitive conditions", J. Artifical Int., 16(1), 88-112.
- Arturo, G. and Omar, M. (2019), "Damage detection in bridges based on patterns of dynamic amplification", Struct. Control Health Monitor., 26(7), e2361. https://doi.org/10.1002/stc.2361.
- Cha, Y.J. (2015), "Structural damage detection using modal strain energy and hybrid multi-objective Optimization", J. Comput. Aid. Civil Infrastruct. Eng., 30, 347-358. https://doi.org/10.1111/mice.12122.
- Chang, C.C. and Chen, L.W. (2003), "Vibration damage detection of a Timoshenko beam by spatial wavelet based approach", Appl. Acousitcs, 64(12), 1217-1240. https://doi.org/10.1016/S0003-682X(03)00070-7.
- Chen, C.B. and Yu, L. (2020), "A hybrid ant lion optimizer with improved Nelder-Mead algorithm for structural damage detection by improving weighted trace lasso regularization", Adv. Struct. Eng., 23(3), 468-484. https://doi.org/10.1177/1369433219872434.
- Chen, Z.P. and Yu, L. (2017), "A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function", Struct. Eng. Mech., 63(6), 825-835. https://doi.org/10.12989/sem.2017.63.6.825.
- Chen, Z.P. and Yu, L. (2018), "A new structural damage detection strategy of hybrid PSO with Monte Carlo simulations and experimental verifications", Measurement, 122, 658-669. https://doi.org/10.1016/j.measurement.2018.01.068.
- Ding, Z.H., Huang, M. and Lu, Z.R. (2016), "Structural damage detection using artificial bee colony algorithm with hybrid search strategy", Swarm Evolution. Comput., 28, 1-13. https://doi.org/10.1016/j.swevo.2015.10.010.
- Ding, Z.H., Li, J. and Hao, H. (2019), "Structural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inference", Mech. Syst. Signal Process., 132, 211-231. https://doi.org/10.1016/j.ymssp.2019.06.029.
- Gao, Y.Q. and Khalid, M.M. (2018), "Deep transfer learning for image-based structural damage recognition", J. Comput. Aid. Civil Infrastruct. Eng., 33, 748-768. https://doi.org/10.1111/mice.12363.
- Ghannadi, P. and Kourehli, S.S. (2019), "Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm", Struct. Eng. Mech., 70(6), 649-659. https://doi.org/10.12989/sem.2019.70.6.649.
- Guo, H.Y. (2017), "Structural multi-damage identification based on strain energy and micro-search artificial fish swarm algorithm", J. Vibroeng., 19(5), 3255-3270. https://doi.org/10.21595/jve.2017.17503.
- Hou, R.R., Xia, Y., Zhou, X.Q. and Huang, Y. (2019), "Sparse Bayesian learning for structural damage detection using expectation-maximization technique", Struct. Control Health Monitor., 26(5), e2343. https://doi.org/10.1002/stc.2343.
- Huang, J.L. and Lu, Z.R. (2017), "BB-BC optimization algorithm for structural damage detection using measured acceleration responses", Struct. Eng. Mech., 64(3), 353-360. https://doi.org/10.12989/sem.2017.64.3.353.
- Huang, M.S., Cheng, S.X., Zhang, H.Y., Gul, M. and Lu, H. (2019), "Structural Damage Identification under Temperature Variations Based on PSO-CS Hybrid Algorithm", J. Struct. Stability Dynam., 19(11), 1950139. https://doi.org/10.1142/S0219455419501396.
- Huang, M.S., Gul, M. and Zhu, H.P. (2018), "Vibration-Based Structural Damage Identification under Varying Temperature Effects", J. Aerosp. Eng., 31(3), 04018014. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000829.
- Huang, M.S., Lei, Y.Z. and Li, X.F. (2019), "Structural Damage Identification based on L-1 Regularization and Bare Bones Particle Swarm Optimization with Double Jump Strategy", Math. Problems Eng., 5954104. https://doi.org/10.1155/2019/5954104.
- Kang, F., Li, J.J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Apply. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050.
- Kao, C.Y. (2003), "Detection of structural damage via free vibration responses generated by approximating artificial neural networks", Comput. Struct., 81(28-29), 2631-2644. https://doi.org/10.1016/S0045-7949(03)00323-7.
- Yu, L. and Li, C. (2014), "A Global Artificial Fish Swarm Algorithm for Structural Damage Detection", Adv. Struct. Eng., 17(3), 331-346. https://doi.org/10.1260/1369-4332.17.3.331.
- Mafarja, M. and Mirjalili, S. (2018), "Whale optimization approaches for wrapper feature selection", Appl. Soft Comput., 62, 441-453. https://doi.org/10.1016/j.asoc.2017.11.006.
- Mirjalili, S. (2015), "Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm", Knowledge Based Syst., 89, 228-249. https://doi.org/10.1016/j.knosys.2015.07.006.
- Mirjalili, S. (2016), "Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems", Neural Comput. Appl., 27(4), 1053-1073. https://doi.org/10.1007/s00521-015-1920-1.
- Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
- Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey Wolf Optimizer", Adv. Eng. Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- Oliv, D., El Aziz, M.A. and Hassanien, A.E. (2017), "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm", Appl. Energy, 200, 141-154. https://doi.org/10.1016/j.apenergy.2017.05.029.
- Pan, C.D., Yu, L., Chen, Z.P., et al. (2016), "A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection", Smart Struct. Syst., 17(6), 957-980. https://doi.org/10.12989/sss.2016.17.6.957.
- Perera, R. and Torres, R. (2006), "Structural damage detection via modal data with genetic algorithms", J. Struct. Eng. ASCE, 132(9), 1491-1501. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1491).
- Precup, R.E., David, R.C. and Petriu, E.M. (2016), "Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity", IFAC-PapersOnLine, 49(5), 55-60. https://doi.org/10.1016/j.ifacol.2016.07.089.
- Seo, J., Hu, J.W. and Lee J. (2016), "Summary review of structural health monitoring applications for highway bridges", J. Performance Construct. Facilities, 30(4), 04015072. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000824.
- Su, C., Liao, W., Tan, L. and Chen, R. (2016), "Reliability-based damage identification using dynamic signatures", J. Bridge Eng., 21(3), 04015058. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000819.
- Xu, H.J., Liu, J.K. and Lv, Z.R. (2016), "Structural damage identification based on modified Cuckoo Search algorithm", Struct. Eng. Mech., 58(1), 163-179. https://doi.org/10.12989/sem.2016.58.1.163.
- Yu, L., Xu, P. (2011), "Structural health monitoring based on continuous ACO method", Microelectronics Reliability, 51(2), 270-278. https://doi.org/10.1016/j.microrel.2010.09.011.
- Yuen, K.V. (2010), "Efficient model correction method with modal measurement", J. Struct. Eng. ASCE, 136(1), 91-99. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000068.
- Zheng, T.Y., Liu, J.K. and Luo, W.L. (2018), "Structural damage identification using cloud model based fruit fly optimization algorithm", Struct. Eng. Mech., 67(3), 245-254. https://doi.org/10.12989/sem.2018.67.3.245.
- Zhu, F.T. and Wu, Y.J. (2014), "A rapid structural damage detection method using integrated ANFIS and interval modeling technique", Appl. Soft Comput., 25, 473-484. https://doi.org/10.1016/j.asoc.2014.08.043.