DOI QR코드

DOI QR Code

WTO, an ontology for wheat traits and phenotypes in scientific publications

  • Received : 2020.03.27
  • Accepted : 2020.06.10
  • Published : 2020.05.28

Abstract

Phenotyping is a major issue for wheat agriculture to meet the challenges of adaptation of wheat varieties to climate change and chemical input reduction in crop. The need to improve the reuse of observations and experimental data has led to the creation of reference ontologies to standardize descriptions of phenotypes and to facilitate their comparison. The scientific literature is largely under-exploited, although extremely rich in phenotype descriptions associated with cultivars and genetic information. In this paper we propose the Wheat Trait Ontology (WTO) that is suitable for the extraction and management of scientific information from scientific papers, and its combination with data from genomic and experimental databases. We describe the principles of WTO construction and show examples of WTO use for the extraction and management of phenotype descriptions obtained from scientific documents.

Keywords

References

  1. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. Plant phenomics, from sensors to knowledge. Curr Biol 2017;27:R770-R783. https://doi.org/10.1016/j.cub.2017.05.055
  2. Cwiek-Kupczynska H, Altmann T, Arend D, Arnaud E, Chen D, Cornut G, et al. Measures for interoperability of phenotypic data: minimum information requirements and formatting. Plant Methods 2016;12:44. https://doi.org/10.1186/s13007-016-0144-4
  3. Guarino N, Oberle D, Staab S. What is an ontology? In: Handbook on Ontologies (Staab S, Studer R, eds.). Berlin: Springer-Verlag, 2009. pp. 1-17.
  4. Jaiswal P, Ware D, Ni J, Chang K, Zhao W, Schmidt S, et al. Gramene: development and integration of trait and gene ontologies for rice. Comp Funct Genomics 2002;3:132-136. https://doi.org/10.1002/cfg.156
  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25:25-29. https://doi.org/10.1038/75556
  6. Gene Ontology. Bethesda: Gene Ontology, 2020. Accessed 2020 Mar 21. Available from: http://geneontology.org/.
  7. Cooper L, Jaiswal P. The plant ontology: a tool for plant genomics. In: Plant Bioinformatics: Methods and Protocols (Edwards D, ed.). New York: Humana Press, 2016. pp. 89-114.
  8. Plant Ontology. Cambridgeshire: EMBL-EBI, 2020. Accessed 2020 Mar 21. Available from: https://www.ebi.ac.uk/ols/ontologies/po.
  9. Avraham S, Tung CW, Ilic K, Jaiswal P, Kellogg EA, McCouch S, et al. The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucleic Acids Res 2008;36:D449-D454. https://doi.org/10.1093/nar/gkm908
  10. Plant Trait Ontology. OBO Technical WG, 2020. Accessed 2020 Mar 21. Available from: http://www.obofoundry.org/ontology/to.html.
  11. Cooper L, Meier A, Laporte MA, Elser JL, Mungall C, Sinn BT, et al. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics. Nucleic Acids Res 2018;46:D1168-D1180. https://doi.org/10.1093/nar/gkx1152
  12. Shrestha R, Matteis L, Skofic M, Portugal A, McLaren G, Hyman G, et al. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice. Front Physiol 2012;3:326. https://doi.org/10.3389/fphys.2012.00326
  13. Crop Ontology Curation Tool. Crop Ontology, 2020. Accessed 2020 Mar 21. Available from: http://cropontology.org.
  14. Van Landeghem S, De Bodt S, Drebert ZJ, Inze D, Van de Peer Y. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis. Plant Cell 2013;25:794-807. https://doi.org/10.1105/tpc.112.108753
  15. Nedellec C, Bossy R, Valsamou D, Ranoux M, Golik W, Sourdille P. Information extraction from bibliography for marker assisted selection in wheat. In: Metadata and Semantics Research. MTSR 2014. Communications in Computer and Information Science, Vol. 478 (Closs S, Studer R, Garoufallou E, Sicilia MA, eds.). Cham: Springer, 2014. pp. 301-313. https://doi.org/10.1007/978-3-319-13674-5_28
  16. Rebholz-Schuhmann D, Oellrich A, Hoehndorf R. Text-mining solutions for biomedical research: enabling integrative biology. Nat Rev Genet 2012;13:829-839. https://doi.org/10.1038/nrg3337
  17. Harper L, Campbell J, Cannon EKS, Jung S, Poelchau M, Walls R, et al. AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture. Database (Oxford) 2018;2018:bay088.
  18. Arighi CN, Carterette B, Cohen KB, Krallinger M, Wilbur WJ, Fey P, et al. An overview of the BioCreative 2012 Workshop Track III: interactive text mining task. Database (Oxford) 2013;2013:bas056. https://doi.org/10.1093/database/bas056
  19. Chaix E, Dubreucq B, Fatihi A, Valsamou D, Bossy R, Ba M, et al. Overview of the Regulatory Network of Plant Seed Development (SeeDev) Task at the BioNLP Shared Task. In: Proceedings of the BioNLP Shared Task 2016 Workshop, 2016 Aug, Berlin, Germany. Stroudsburg: Association for Computational Linguistics, 2016. pp. 1-11.
  20. Spasic I, Ananiadou S, McNaught J, Kumar A. Text mining and ontologies in biomedicine: making sense of raw text. Brief Bioinform 2005;6:239-251. https://doi.org/10.1093/bib/6.3.239
  21. Limsopatham N, Collier N. Normalising medical concepts in social media texts by learning semantic representation. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2016. pp. 1014-1023.
  22. Duveiller E, Singh RP, Nicol JM. The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 2007;157:417-430. https://doi.org/10.1007/s10681-007-9380-z
  23. Suarez-Figueroa MC, Gomez-Perez A, Fernandez-Lopez M. The NeOn methodology for ontology engineering. In: Ontology Engineering in a Networked World (Suarez-Figueroa MC, Gomez-Perez A, Motta E, Gangemi A, eds.). Berlin: Springer, 2012. pp. 9-34.
  24. Ranoux M, Nedellec C, Cariou-Pham E, Bossy R, de Vallavieille-Pope C, Leconte M, et al. Validation of markers linked to genes of interest with a view to establishing a database for assisted selection in common wheat. In: Synthese des programmes de Recherche FSOV (Fond de Soutien a l'Obtention Vegetale): Actes de la Rencontre Scientifique, 2015 Jan, Paris, France. Groupement National Interprofessionnel des Semences et Plants, 2015. pp. 1-10.
  25. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Apels R, Xia XC. Catalog of gene symbols for wheat: 2009 supplement. SHEGEN, 2009. Accessed 2020 Mar 21. Available from: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2009.pdf.
  26. GrainGenes: a database for Triticeae and Avena. Albany: GrainGenes, 2020. Accessed 2020 Mar 21. Available from: https://wheat.pw.usda.gov/GG3/.
  27. Nedellec C, Golik W, Aubin S, Bossy R. Building large lexicalized ontologies from text: a use case in indexing biotechnology patents. In: International Conference on Knowledge Engineering and Knowledge Management (EKAW 2010), Volume 6317 of the series Lecture Notes in Computer Science (Cimiano P, Pinto HS, eds.). Lisbon: Springer Verlag, 2010. pp. 514-523.
  28. Aubin S, Hamon T. Improving term extraction with terminological resources. In: International Conference on Knowledge Engineering and Knowledge Management (EKAW 2010), Volume 6317 of the series Lecture Notes in Computer Science (Cimiano P, Pinto HS, eds.). Lisbon: Springer Verlag, 2010. pp. 514-523.
  29. Golik W, Bossy R, Ratkovic Z, Nedellec C. Improving term extraction with linguistic analysis in the biomedical domain. In: Proceedings of the 14th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing'13), Special Issue of the journal Research in Computing Science, Vol. 70 (Gelbukh A, ed.). Zacatenco: Instituto Politecnico Nacional, Centro de Investigacion en Computacion, 2013. pp. 157-172.
  30. Genebank Project, National Agriculture and Food Research Organization. Wheat descriptors (PDF) for characterization and evaluation on plant genetic resources. Tsukuba: Genetic Resources Center, 1997-2020. Accessed 2020 Mar 21. Available from: https://www.gene.affrc.go.jp/manuals-plant_characterization_en.php.
  31. Wheat INRA Phenotype Ontology (WIPO). Versailles: INRA-URGI, 2020. Accessed 2020 Mar 21. Available from: https://urgi-git.versailles.inra.fr/urgi-is/ontologies/tree/develop/Wheat.
  32. OpenMinTeD platform. Brussels: European Commission, 2020. Accessed 2020 Mar 21. Available from: https://services.openminted.eu/home.
  33. Ehrig M. Ontology alignment: bridging the semantic gap (Vol. 4). New York: Spring-Verlag, 2006.
  34. Dzale Yeumo E, Alaux M, Arnaud E, Aubin S, Baumann U, Buche P, et al. Developing data interoperability using standards: a wheat community use case. F1000Res 2017;6:1843. https://doi.org/10.12688/f1000research.12234.2
  35. Krajewski P, Chen D, Cwiek H, van Dijk AD, Fiorani F, Kersey P, et al. Towards recommendations for metadata and data handling in plant phenotyping. J Exp Bot 2015;66:5417-5427. https://doi.org/10.1093/jxb/erv271