DOI QR코드

DOI QR Code

A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells

  • Allam, Othmane (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Draiche, Kada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University) ;
  • Adda Bedia, E.A. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • 투고 : 2019.11.04
  • 심사 : 2020.08.04
  • 발행 : 2020.08.25

초록

This research is devoted to investigate the bending and free vibration behaviour of laminated composite/sandwich plates and shells, by applying an analytical model based on a generalized and simple refined higher-order shear deformation theory (RHSDT) with four independent unknown variables. The kinematics of the proposed theoretical model is defined by an undetermined integral component and uses the hyperbolic shape function to include the effects of the transverse shear stresses through the plate/shell thickness; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by employing the principle of virtual work and solved via Navier-type analytical procedure. To verify the validity and applicability of the present refined theory, some numerical results related to displacements, stresses and fundamental frequencies of simply supported laminated composite/sandwich plates and shells are presented and compared with those obtained by other shear deformation models considered in this paper. From the analysis, it can be concluded that the kinematics based on the undetermined integral component is very efficient, and its use leads to reach higher accuracy than conventional models in the study of laminated plates and shells.

키워드

과제정보

The first Author would like to acknowledge the support provided by the Directorate General for Scientific Research and Technological Development (DGRSDT).

참고문헌

  1. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: A micromechanical approach", Iran. J. Sci. Technol. Tran. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  2. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
  3. Abrishambaf, A., Pimentel, M. and Nunes, S. (2019), "A meso-mechanical model to simulate the tensile behaviour of ultra-high performance fibre-reinforced cementitious composites", Compos. Struct., 222, 110931. https://doi.org/10.1016/j.compstruct.2019.110911.
  4. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maintain., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  5. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  6. Avcar, M. (2014), "Free vibration analysis of beams considering different geometric characteristics and boundary conditions", Int. J. Mech. Appl., 4(3), 94-100. https://doi.org/10.5923/j.mechanics.20140403.03.
  7. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  8. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2
  9. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  10. Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1), 71-90. https://doi.org/10.12989/cme.2019.1.1.071.
  11. Barati, M.R. and Shahverdi, H. (2019), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Brazil. Soc. Mech. Sci. Eng., 42(1), 33. https://doi.org/10.1007/s40430-019-2118-8.
  12. Barbero, E.J. and Reddy, J.N. (1990), "General two dimensional theory of laminated cylindrical shells", AIAA J., 28, 544-553. https://doi.org/10.2514/3.10426.
  13. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Ad. Aircraft Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
  14. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
  15. Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  16. Benhenni, M., Hassaine Daouadji, T., Abbes, B., LI, Y.M. and Abbes, F. (2018), "Analytical and numerical results for free vibration of laminated composites plates", Int. J. Chem. Molecul. Eng., 12(6), 300-304. https://doi.org/10.5281/zenodo.1340599.
  17. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. http://dx.doi.org/10.12989/anr.2018.6.4.339.
  18. Bensattalah, T., Zidour, M., Hassaine Daouadji, T. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3), 269-277. http://dx.doi.org/10.12989/sem.2019.70.3.269.
  19. Biswal, D.K., Joseph, S.V. and Mohanty, S.C. (2017), "Free vibration and buckling study of doubly curved laminated shell panels using higher order shear deformation theory based on Sander's approximation", J. Mech. Eng. Sci., 232(20), 3612-3628. https://doi.org/10.1177/0954406217740165.
  20. Cerracchio, P., Gherlone, M. and Tessler, A. (2015), "Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads", Meccanica, 50, 2487-2496. https://doi.org/10.1007/s11012-015-0146-8
  21. Cuba, L.M., Arciniega, R.A. and Mantari, J.L. (2019), "Generalized 2-unknown's HSDT to study isotropic and orthotropic composite plates", J. Appl. Comput. Mech., 5(1), 141-149. https://doi.org/10.22055/jacm.2018.24953.1222.
  22. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. http://dx.doi.org/10.12989/acd.2017.2.1.057.
  23. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  24. Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads", J. Vib. Control., 107754631773408. https://doi.org/10.1177/1077546317734083.
  25. Ebrahimi, F. and Barati, M.R. (2017b), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
  26. Ebrahimi, F. and Barati, M.R. (2017c), "Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams", Wave. Rand. Complex Media, 28(2), 326-342. https://doi.org/10.1080/17455030.2017.1346331.
  27. Ebrahimi, F. and Barati, M.R. (2018), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 428. https://doi.org/10.1007/s40430-018-1350-y.
  28. Eltaher, M. A., Wagih, A., Melaibari, A., Fathy, A. and Lubineau, G. (2019a), "Effect of $Al_2O_3$ particles on mechanical and tribological properties of Al-Mg dual-matrix nanocomposites", Ceram. Int., 46(5), 5779-5787. https://doi.org/10.1016/j.ceramint.2019.11.028.
  29. Eltaher, M.A., Agwa, M. and Kabeel, A (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136.
  30. Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E. and Abdraboh, A.M. (2019b), "Modal participation of fixed-fixed single-walled carbon nanotube with vacancies", Int. J. Adv. Struct. Eng., 11, 151-163. https://doi.org/10.1007/s40091-019-0222-8.
  31. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020), "Static stability of a unified composite beams under varying axial loads", Thin Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  32. Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. http://dx.doi.org/10.12989/cac.2019.23.5.303.
  33. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  34. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 1-9. https://doi.org/10.1007/s42417-020-00203-8.
  35. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  36. Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2003), "Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos.: Part B, 34, 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0.
  37. Fladr, J., Bily, P. and Broukalova, I. (2019), "Evaluation of steel fiber distribution in concrete by computer aided image analysis", Compos. Mater. Eng., 1(1), 49-70. https://doi.org/10.12989/cme.2019.1.1.049.
  38. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135(1), 81. https://doi.org/10.1140/epjp/s13360-019-00042-x.
  39. Ghadimi, M.G. (2020), "Buckling of non-sway Euler composite frame with semi-rigid connection", Compos. Mater. Eng., 2(1), 13-24. https://doi.org/10.12989/cme.2020.2.1.013.
  40. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique", Compos. Mater. Eng., 2(1), 25-41. https://doi.org/10.12989/cme.2020.2.1.025.
  41. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  42. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  43. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  44. Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071.
  45. Iurlaro, L., Gherlone, M., Di Sciuva, M. and Tessler, A. (2013), "Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories", Compos. Struct., 106, 777-792. https://doi.org/10.1016/j.compstruct.2013.07.019.
  46. Iurlaro, L., Gherlone, M., Di Sciuva, M. and Tessler, A. (2015), "Refined Zigzag Theory for laminated composite and sandwich plates derived from Reissner's Mixed Variational Theorem", Compos. Struct., 133, 809-817. https://doi.org/10.1016/j.compstruct.2015.08.004
  47. Kant, T. (1981), "Thermoelasticity of thick, laminated orthotropic shells", Transactions of the International Conference on Structural Mechanics in Reactor Technology, Vol. M, Methods for Structural Analysis, North-Holland Publishing Co., Amsterdam, Netherlands.
  48. Katariya, P.V. and Panda, S.K. (2019), "Frequency and deflection responses of shear deformable Skew sandwich curved shell panel: A finite element approach", AJSE J., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
  49. Kefal, A., Hasim, K.A. and Yildiz, M. (2019), "A novel isogeometric beam element based on mixed form of refined zigzag theory for thick sandwich and multilayered composite beams", Compos. Part B: Eng., 167, 100-121. https://doi.org/10.1016/j.compositesb.2018.11.102.
  50. Kefal, A., Tessler, A. and Oterkus, E. (2017), "An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures", Compos. Struct., 179, 514-540. https://doi.org/10.1016/j.compstruct.2017.07.078.
  51. Khare, R.K., Kant, T. and Garg, A.K. (2003), "Closed-form thermo-mechanical solutions of higher-order theories of cross-ply laminated shallow shells", Compos. Struct., 59(3), 313-340. https://doi.org/10.1016/S0263-8223(02)00245-3.
  52. Kirchhoff, G.R. (1850), "Uber das gleichgewicht und die bewegung einer elastischen Scheibe", Journal Fur die Reine und Angewandte Mathematik, Crelle's J., 40, 51-88.
  53. Koiter, W.T. (1961), "A consistent first approximation in the general theory of thin elastic shells", Proceedings of the IUTAM Symp. on the Theory of Thin Elastic Shells, North-Holland, Amsterdam.
  54. Kossakowski, P.G. and Uzarska, I. (2019), "Numerical modeling of an orthotropic RC slab band system using the Barcelona model", Adv. Comput. Des., 4(3), 211-221. https://doi.org/10.12989/acd.2019.4.3.211.
  55. Kumar, A., Chakrabarti, A. and Ketkar, M. (2013), "Analysis of laminated composite skew shells using higher-order shear deformation theory", Lat. Am. J. Solid. Struct., 10, 891-919. https://doi.org/10.1590/S1679-78252013000500003.
  56. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. http://dx.doi.org/10.12989/cac.2018.22.6.501.
  57. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  58. Leissa, A.W. and Chang, J.D. (1996), "Elastic deformation of thick, laminated composite shells", Compos. Sruct., 35(2), 153-170. https://doi.org/10.1016/0263-8223(96)00028-1.
  59. Lopez-Chavarria, S., Luevanos-Rojas, A., Medina-Elizondo, M., Sandoval-Rivas, R. and Velazquez-Santillan, F. (2019), "Optimal design for the reinforced concrete circular isolated footings", Adv. Comput. Des., 4(3), 273-294. https://doi.org/10.12989/acd.2019.4.3.273.
  60. Love, A.E.H. (1888), "The small vibration and deformations of a thin elastic shell", Philos. Tran., Roy. Soc., Ser. A, 179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
  61. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  62. Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  63. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
  64. Monge, J.C., Mantari, J.L. Yarasca, J. and Arciniega, R.A. (2019), "On bending response of doubly curved laminated composite shells using hybrid refined models", J. Appl. Comput. Mech., 5(5) 875-899. https://doi.org/10.22055/JACM.2019.27297.1397.
  65. Naghdi, P.M. (1963), Foundations of Elastic Shell Theory, Progr. Solid Mech., North-Holland, Amsterdam.
  66. Naghdi, P.M. (1972), Theory of Shells and Plates, Handbuch der Physik, Springer-Verlag, Berlin.
  67. Nikkhoo, A., Asili, S., Sadigh, S., Hajirasouliha, I. and Karegar, H. (2019), "A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses", Adv. Comput. Des., 4(3), 307-326. https://doi.org/10.12989/acd.2019.4.3.307.
  68. Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868.
  69. Noor, AK. and Burton WS. (1990), "Three-dimensional solutions for anti-symmetrically laminated anisotropic plates", ASME J Appl Mech, 57(1), 182-188. https://doi.org/10.1115/1.2888300.
  70. Noor, AK. and Burton, WS. (1992), "Computational models for high-temperature multilayered composite plates and shells", Appl. Mech. Rev., 45(10), 419-446. https://doi.org/10.1115/1.3119742.
  71. Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compo. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.
  72. Pandya, B.N. and Kant, T. (1988), "Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations", Int. J. Solid. Struct., 24(12), 1267-1286. https://doi.org/10.1016/0020-7683(88)90090-X.
  73. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  74. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. http://dx.doi.org/10.12989/gae.2020.22.1.065.
  75. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. http://dx.doi.org/10.12989/cac.2019.23.5.361.
  76. Ramos, I.A., Mantari, J.L. and Zenkour, A.M. (2016), "Laminated composite plates subject to thermal load using trigonometrical theory based on Carrera Unified Formulation", Compos. Struct., 143, 324-335. https://doi.org/10.1016/j.compstruct.2016.02.020.
  77. Reddy J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.
  78. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition, CRC Press.
  79. Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5.
  80. Reissner, E. (1941), "A new derivation of the equations of the deformation of elastic shells", Am. J. Math., 63(1), 177-184. https://doi.org/10.2307/2371288.
  81. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  82. Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  83. Sanders, J.L. (1959), "An improved first-approximation theory for thin shells", NASA Technical Report, R-24.
  84. Sarangan, S. and Singh, B.N. (2016), "Higher order closed form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
  85. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 29, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
  86. Sayyad, A.S. and Ghugal, Y.M. (2017), "On the free vibration of angle-ply laminated composite and soft core sandwich plates", J. Sandw. Struct. Mater., 19(6), 679-711. https://doi.org/10.1177/1099636216639000.
  87. Sayyad, A.S. and Ghugal, Y.M. (2020), "Stress analysis of laminated composite and sandwich cylindrical shells using a generalized shell theory", Compos. Mater. Eng., 2(2), 103-124. https://doi.org/10.12989/cme.2020.2.2.103.
  88. Sedighi, H.M. and Shirazi, K.H. (2012), "A new approach to analytical solution of cantilever beam vibration with nonlinear boundary condition", J. Comput. Nonlin. Dyn., 7(3), 034502. https://doi.org/10.1115/1.4005924.
  89. Sedighi, H.M., Shirazi, K.H. and Attarzadeh, M.A. (2013), "A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches", Acta Astronautica, 91, 245-250. https://doi.org/10.1016/j.actaastro.2013.06.018.
  90. Sedighi, H.M., Shirazi, K.H., Reza, A. and Zare, J. (2012), "Accurate modeling of preload discontinuity in the analytical approach of the nonlinear free vibration of beams", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 226(10), 2474-2484. https://doi.org/10.1177/0954406211435196.
  91. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. http://dx.doi.org/10.12989/anr.2019.7.5.365.
  92. Setoodeh, A.R., Tahani, M. and Selahi, E. (2011), "Hybrid layerwise-differential quadrature transient dynamic analysis of functionally graded axisymmetric cylindrical shells subjected to dynamic pressure", Compos. Struct., 93(11), 2882-2894. https://doi.org/10.1016/j.compstruct.2011.06.011
  93. Shokrieh, M.M. and Kondori, M.S. (2020), "Effects of adding graphene nanoparticles in decreasing of residual stresses of carbon/epoxy laminated composites", Compos. Mater. Eng., 2(1), 53-64. https://doi.org/10.12989/cme.2020.2.1.053.
  94. Singh, A. and Kumari, P. (2020), "Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach", Adv. Comput. Des., 5(1), 55-89. https://doi.org/10.12989/acd.2020.5.1.055.
  95. Sofiyev, A., Aksogan, O., Schnack, E. and Avcar, M. (2008), "The stability of a three-layered composite conical shell containing a FGM layer subjected to external pressure", Mech. Adv. Mater. Struct., 15(6-7), 461-466. https://doi.org/10.1080/15376490802138492.
  96. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-220. https://doi.org/10.1007/BF01176650.
  97. Srinivas, S. (1973), "A refined analysis of composite laminates", J. Sound Vib., 30, 495-507. https://doi.org/10.1016/S0022-460X(73)80170-1
  98. Swain, P., Adhikari, B. and Dash, P. (2017), "A higher-order polynomial shear deformation theory for geometrically nonlinear free vibration response of laminated composite plate", Mech. Adv. Mater. Struct., 26(2), 129-138. https://doi.org/10.1080/15376494.2017.1365981.
  99. Tabrizi, I.E., Kefal, A., Zanjani, J.S.M., Akalin, C. and Yildiz, M. (2019), "Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory", Compos. Struct., 223, 110971. https://doi.org/10.1016/j.compstruct.2019.110971
  100. Tessler, A. (2015), "Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner's mixed variational principle", Meccanica, 50, 2621-2648. https://doi.org/10.1007/s11012-015-0222-0
  101. Tessler, A., Di Sciuva, M. and Gherlone, M. (2010), "A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics", J. Mech. Mater. Struct., 5(2), 341-367. https://doi.org/10.2140/jomms.2010.5.341.
  102. Thai, C.H., Ferreira, A.J.M., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis", Acta Mechanica, 227(5), 1225-1250. https://doi.org/10.1007/s00707-015-1547-4.
  103. Thai, H.T. and Kim, S.E. (2010), "Free vibration of laminated composite plates using two variable refined plate theory", Int. J. Mech. Sci., 52, 626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002.
  104. Thakur, S.N., Ray, C. and Chakraborty, S. (2017), "A new efficient higher-order shear deformation theory for a doubly curved laminated composite shell", Acta Mechanica, 228(1), 69-87. https://doi.org/10.1007/s00707-016-1693-3.
  105. Tornabene, F. (2016), "General higher order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels", Mech. Adv. Mater. Struct., 23(9), 1046-1067. https://doi.org/10.1080/15376494.2015.1121522.
  106. Versino, D., Gherlone, M., Mattone, M., Di Sciuva, M. and Tessler, A. (2013), "$C^{\circ}$ triangular elements based on the Refined Zigzag Theory for multilayer composite and sandwich plates", Compos. Part B: Eng., 44(1), 218-230. https://doi.org/10.1016/j.compositesb.2012.05.026
  107. Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "General higher-order shear deformation theories for free vibration analysis of completely doubly-curved laminated shells and panels", Compos. Struct., 95(1), 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005.
  108. Whitney, J.M. (1984), "Buckling of anisotropic laminated cylindrical plates", AIAA J., 22(11), 1641-1645. https://doi.org/10.2514/3.8830.
  109. Xiang, S., Wang, K., Ai Y., Sha, Y. and Shi, H. (2009), "Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories", Compos. Struct., 91(1), 31-37. https://doi.org/10.1016/j.compstruct.2009.04.029.
  110. Yarasca, J., Mantari, J.L., Petrolo, M. and Carrera, E. (2017), "Best theory for cross-ply composite plates using polynomial, trigonometric and exponential thickness expansions", Compos. Struct., 161, 362-383. https://doi.org/10.1016/j.compstruct.2016.11.053.
  111. Zenkour, A.M. (2007), "Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates", J. Sandw. Struct. Mater., 9(3), 213-238. https://doi.org/10.1177/1099636207065675.
  112. Zouatnia, N. and Hadji, L. (2019a), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.
  113. Zouatnia, N. and Hadji, L. (2019b), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177.

피인용 문헌

  1. Simulation Investigation of the Stowing and Deployment Processes of a Self-Deployable Sunshield vol.2021, 2020, https://doi.org/10.1155/2021/6672177
  2. Geometrical Influences on the Vibration of Layered Plates vol.2021, 2020, https://doi.org/10.1155/2021/8843358
  3. Study on the Dynamic Performance of Locally Resonant Plates with Elastic Unit Cell Edges vol.2021, 2021, https://doi.org/10.1155/2021/5541052
  4. Analysis of the Vibration of the Ground Surface by Using the Layered Soil: Viscoelastic Euler Beam Model due to the Moving Load vol.2021, 2020, https://doi.org/10.1155/2021/6619197
  5. Initial Parameters Affecting the Multilayer Doubly Curved Concrete Shell Roof vol.2021, 2020, https://doi.org/10.1155/2021/7999103
  6. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.141
  7. Simplified approach to estimate the lateral torsional buckling of GFRP channel beams vol.77, pp.4, 2020, https://doi.org/10.12989/sem.2021.77.4.523
  8. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  9. Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets vol.27, pp.4, 2020, https://doi.org/10.12989/cac.2021.27.4.369
  10. Dynamic damage analysis of a ten-layer circular composite plate subjected to low-velocity impact vol.21, pp.3, 2020, https://doi.org/10.1007/s43452-021-00238-y
  11. Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach vol.8, pp.5, 2020, https://doi.org/10.1093/jcde/qwab043