Acknowledgement
The authors would like to acknowledge for the financial support by the Key Research and Development Projects of the National 13th Five-Year, (No. 2018YFD1101001)"; National Natural Science Foundation of China, (No. 51972214); Youth Program of National Natural Science Foundation of China, (No. 51902212); Innovation Talents Support Program for Young and Middle-aged People in Shenyang(No. RC190374); Liaoning innovation team support (No. LT2019012); Young Top Talents of Liaoning Province (No. XLYC 1807096).
References
- Andreasen, A.H.M. (1930), "Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten)", Kolloid Zeitschrift, 50, 217-228. https://doi.org/10.1007/BF01422986.
- Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M. and Techapaphawit, S. (2019), "Physical, chemical, and geotechnical properties of coal fly ash: A global review", Case Stud. Constr. Mater., 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263.
- Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047.
- Chen, H. and Lee, C. (2019), "Electricity consumption prediction for buildings using multiple adaptive network-based fuzzy inference system models and gray relational analysis", Energy Report., 5, 1509-1524. https://doi.org/10.1016/j.egyr.2019.10.009.
- Deepak, D. and Davim, J.P. (2019), "Multi-response optimization of process parameters in AWJ machining of hybrid GFRP composite by grey relational method", Procedia Manuf., 35, 1211-1221. https://doi.org/10.1016/j.promfg.2019.07.021.
- Duman, G.M., Kongar, E. and Gupta, S.M. (2019), "Estimation of electronic waste using optimized multivariate grey models", Waste Manage., 95, 241-249. https://doi.org/10.1016/j.wasman.2019.06.023.
- Judycki, J. (2014), "Influence of low-temperature physical hardening on stiffness and tensile strength of asphalt concrete and stone mastic asphalt", Constr. Build. Mater., 61, 191-199. https://doi.org/10.1016/j.conbuildmat.2014.03.011.
- Kanchana, J., Prasath, V. and Krishnaraj, V. (2019), "Multi response optimization of process parameters using grey relational analysis for milling of hardened Custom 465 steel", Procedia Manuf., 30, 451-458. https://doi.org/10.1016/j.promfg.2019.02.064.
- Khan, M. and Ali, M. (2019), "Improvement in concrete behavior with fly ash, silica-fume and coconut fibres", Constr. Build. Mater., 203, 174-187. https://doi.org/10.1016/j.conbuildmat.2019.01.103.
- Lai, W., Chang, T., Wang, J., Kan, C. and Chen, W. (2012), "An evaluation of Mahalanobis Distance and grey relational analysis for crack pattern in concrete structures", Comput. Mater. Sci., 65, 115-121. https://doi.org/10.1016/j.commatsci.2012.07.002.
- Ma, X. and Liu, Z. (2018), "The kernel-based nonlinear multivariate grey model", Appl. Math. Model., 56, 217-238. https://doi.org/10.1016/j.apm.2017.12.010.
- Mehta, P.K. (1985), "Influence of fly ash characteristics on the strength of portland-fly ash mixtures", Cement Concrete Res., 15, 669-674. https://doi.org/10.1016/0008-8846(85)90067-5.
- Nguyen, T.B.T., Chatchawan, R., Saengsoy, W., Tangtermsirikul, S. and Sugiyama, T. (2019), "Influences of different types of fly ash and confinement on performances of expansive mortars and concretes", Constr. Build. Mater., 209, 176-186. https://doi.org/10.1016/j.conbuildmat.2019.03.032.
- Nikbin, I.M., Rahimi, S. and Allahyari, H. (2017), "A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network", Eng. Fract. Mech., 186, 466-482. https://doi.org/10.1016/j.engfracmech.2017.11.010.
- Pacheco, J. N., J. de Brito, C. Chastre and L. Evangelista (2020), "Uncertainty of shear resistance models: Influence of recycled concrete aggregate on beams with and without shear reinforcement", Eng. Struct., 204, 109905. https://doi.org/10.1016/j.engstruct.2019.109905.
- Paya, J., Monzo, J., Peris-Mora, E., Borrachero, M.V., Tercero, R. and Pinillos, C. (1995), "Early-strength development of portland cement mortars containing air classified fly ashes", Cement Concrete Res., 25, 449-456. https://doi.org/10.1016/0008-8846(95)00031-3.
- Qiao, Y., Wang, H., Cai, L., Zhang, W. and Yang, B. (2016), "Influence of low temperature on dynamic behavior of concrete", Constr. Build. Mater., 115, 214-220. https://doi.org/10.1016/j.conbuildmat.2016.04.046.
- Sata, V., Ngohpok, C. and Chindaprasirt, P. (2016), "Properties of pervious concrete containing high-calcium fly ash", Comput. Concrete, 17, 337-351. https://doi.org/10.12989/cac.2016.17.3.337.
- Singh, N., Kumar, P. and Goyal, P. (2019), "Reviewing the behaviour of high volume fly ash based self compacting concrete", J. Build. Eng., 26, 100882. https://doi.org/10.1016/j.jobe.2019.100882.
- Sugranez, R., Alvarez, J.I., Cruz-Yusta, M., Marmol, I., Morales, J. and Sanchez, L. (2013), "Controlling microstructure in cement based mortars by adjusting the particle size distribution of the raw materials", Constr. Build. Mater., 41, 139-145. https://doi.org/10.1016/j.conbuildmat.2012.11.090.
- Topcu, B. and Saridemir, M. (2008), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42, 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011.
- Trivedi, J.S., Nair, S. and Iyyunni, C. (2013), "Optimum utilization of fly ash for stabilization of sub-grade soil using genetic algorithm", Procedia Eng., 51, 250-258. https://doi.org/10.1016/j.proeng.2013.01.034.
- Wei, B., Xie, N. and Yang, Y. (2019), "Data-based structure selection for unified discrete grey prediction model", Exp. Syst. Appl., 136, 264-275. https://doi.org/10.1016/j.eswa.2019.06.053.
- Xu, J., Zhao, X., Yu, Y., Xie, T., Yang, G. and Xue, J. (2019), "Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks", Constr. Build. Mater., 211, 479-491. https://doi.org/10.1016/j.conbuildmat.2019.03.234.
- Xu, Q., Shen, Q., Guo, X., Wang, W., Jin, P. and Gong, D. (2014), "Study on the lifetime prediction and evaluation of metering assets based on the multivariate linear regression analysis", Elec. Measure. Instrum., 51, 17-21.
- Yeh, I. (2008), "Modeling slump of concrete with fly ash and superplasticizer", Comput. Concrete, 5, 559-572. https://doi.org/10.12989/cac.2008.5.6.559.
- Yu, J., Yoo, J., Jang, J., Park, J.H. and Kim, S. (2018), "A novel hybrid of auto-associative kernel regression and dynamic independent component analysis for fault detection in nonlinear multimode processes", J. Process Control, 68, 129-144. https://doi.org/10.1016/j.jprocont.2018.05.004.
- Zeng, X., Shu, L., Yan, S., Shi, Y. and He, F. (2019), "A novel multivariate grey model for forecasting the sequence of ternary interval numbers", Appl. Math. Model., 69, 273-286. https://doi.org/10.1016/j.apm.2018.12.020.