DOI QR코드

DOI QR Code

On static bending of multilayered carbon nanotube-reinforced composite plates

  • Daikh, Ahmed Amine (Structural Engineering and Mechanics of Materials Laboratory, Department of Civil Engineering) ;
  • Bensaid, Ismail (IS2M Laboratory, Faculty of Technology, Mechanical Engineering Department, Tlemcen University) ;
  • Bachiri, Attia (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Houari, Mohamed Sid Ahmed (Mechanics of Structures and Solids Laboratory, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Merzouki, Tarek (LISV, University of Versailles Saint-Quentin)
  • Received : 2020.03.24
  • Accepted : 2020.07.24
  • Published : 2020.08.25

Abstract

In this paper, the bending behavior of single-walled carbon nanotube-reinforced composite (CNTRC) laminated plates is studied using various shear deformation plate theories. Several types of reinforcement material distributions, a uniform distribution (UD) and three functionally graded distributions (FG), are inspected. A generalized higher-order deformation plate theory is utilized to derive the field equations of the CNTRC laminated plates where an analytical technique based on Navier's series is utilized to solve the static problem for simply-supported boundary conditions. A detailed numerical analysis is carried out to examine the influence of carbon nanotube volume fraction, laminated composite structure, side-to-thickness, and aspect ratios on stresses and deflection of the CNTRC laminated plates.

Keywords

Acknowledgement

This research was supported by the Algerian Directorate General of Scientific Research and Technological Development (DGRSDT) and University of Mustapha Stambouli of Mascara (UMS Mascara) in Algeria.

References

  1. Alibeigloo, A. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity", Compos. Struct., 95, 612-622. https://doi.org/10.1016/j.compstruct.2017.06.015.
  2. Alibeigloo, A. and Liew, K.M. (2013), "Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity", Compos. Struct., 106, 873-881. https://doi.org/10.1016/j.compstruct.2013.07.002.
  3. Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahabodini, A. (2015), "Forced vibration analysis of functionally graded carbon.nanotube-reinforced composite plates using a numerical strategy", Physica E: Low Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011.
  4. Bakhadda, B., Bachir-Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud SR. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27, 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  5. Batou, B., Nebab, M., Bennai, R., AitAtmane, H., Tounsi, A., Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  6. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1-18. http://dx.doi.org/10.12989/aas.2019.6.1.001.
  7. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
  8. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  9. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209. https://doi.org/10.12989/sem.2020.73.2.209.
  10. Chelahi, C.S., Kaci, A., Bousahla, A. A., Tounsi, A., Benrahou, K. H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471
  11. Daikh, A.A. and Zenkour, A.M. (2019a), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Expres., 6, 065703. https://doi.org/10.1088/2053-1591/ab0971
  12. Daikh, A.A. and Zenkour, A.M. (2019b), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6(11) 115707. https://doi.org/10.1088/2053-1591/ab48a9
  13. Daikh, A.A. Bachiri, A. Houari, M.S.A. and Tounsi, A. (2020b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Bas. Des. Struct. Mach., 1-29. https://doi.org/10.1080/15397734.2020.1752232.
  14. Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2020), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 1099636220909790. https://doi.org/10.1177/1099636220909790.
  15. Draoui. A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  16. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 2, 394-401. https://doi.org/10.1016/j.matdes.2006.09.022.
  17. Fazzolari, F.A. (2018), "Thermoelastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates", Compos. Struct., 196, 199-214. https://doi.org/10.1016/j.compstruct.2018.04.026.
  18. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos.: Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006.
  19. Griebel, M. and Hamaekers, J. (2004), "Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193, 1773-1788. https://doi.org/10.1016/j.cma.2003.12.025.
  20. Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67, 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
  21. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-23. https://doi.org/10.1016/j.commatsci.2006.06.011.
  22. Kaci, A., Tounsi, A., Bakhti, K. and Adda Bedia, E.A. (2012), "Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates", Steel Compos. Struct., 12, 491-504. https://doi.org/10.12989/scs.2012.12.6.491.
  23. Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. Inst. Mech. Eng., Part L: J. Mater. Des. Appl., 223, 53-62. https://doi.org/10.1243/14644207JMDA189.
  24. Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011.
  25. Karami, B., Janghorban, M. and Rabczuk, T. (2019a), "Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model", Eur. J. Mech.-A/Solid., 78, 103822. https://doi.org/10.1016/j.euromechsol.2019.103822.
  26. Karami, B., Janghorban, M. and Rabczuk, T. (2020a), "Forced vibration analysis of functionally graded anisotropic nanoplates resting on wWinkler/Pasternak-Foundation", Comput. Mater. Continua, 62(2), 607-629. http://dx.doi.org/10.32604/cmc.2020.08032.
  27. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28, 99-110. http://dx.doi.org/10.12989/scs.2018.28.1.099.
  28. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A Comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
  29. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019b), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater. Res. Express, 6(9), 0950a9. https://doi.org/10.1088/2053-1591/ab3474
  30. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020b), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. http://dx.doi.org/10.12989/sem.2020.73.2.191.
  31. Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72, 2433-2449. https://doi.org/10.1016/j.camwa.2016.09.007.
  32. Lau, K.T., Gu, C., Gao, G.H., Ling H.Y. and Reid, S.R. (2004), "Stretching process of single- and multiwalled carbon nanotubes for nanocomposite applications", Carbon, 42, 426-8. https://doi.org/10.1016/j.carbon.2003.10.040
  33. Lei, X.Z., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.
  34. Lei, X.Z., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138. https://doi.org/10.1016/j.compstruct.2013.06.003.
  35. Lei, X.Z., Liew, K.M. and Yu, J.L. (2013), "Large deflection analysis of functionally graded carbon nanotube reinforced composite plates by the element-free kp-Ritz method", Comput. Meth. Appl. Mech. Eng., 256, 189-199. https://doi.org/10.1016/j.cma.2012.12.007.
  36. Mehar, K. and Panda, S.K. (2018), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37, 1643-1657. https://doi.org/10.1002/adv.21821.
  37. Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout", Beilstein J. Nanotechnol., 7, 511-523. https://doi.org/10.3762/bjnano.7.45.
  38. Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007.
  39. Phung-Van, P., Abdel-Wahab, M. and Liew, K.M., Bordas, S.P.A. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021.
  40. Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Nonlin. Mech., 59, 37-45. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011.
  41. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  42. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A., Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  43. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. http://dx.doi.org/10.12989/scs.2019.32.2.173.
  44. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  45. Shams, S.H., Soltani, B. and MemarArdestani, M. (2016), "The effect of elastic foundations on the buckling behavior of functionally graded carbon nanotube-reinforced composite plates in thermal environments using a meshfree method", J. Solid Mech., 8, 262-279.
  46. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  47. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31, 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.
  48. Thai, C.H., Ferreira, A.J.M. and Rabczuk, T. and Nguyen-Xuan, H.A (2017), "A naturally stabilized nodal integration meshfree formulation for carbon nanotube-reinforced composite plate analysis", Eng. Anal. Bound. Elem., 92, 136-155. https://doi.org/10.1016/j.enganabound.2017.10.018.
  49. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29, 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  50. Trang, L.T.N. and Tung, H.V. (2018), "Tangential edge constraint sensitivity of nonlinear stability of CNT-reinforced composite plates under compressive and thermomechanical loadings", J. Eng. Mech., ASCE, 144, 04018056. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001479.
  51. Truong-Thi, T., Vo-Duy, T., Ho-Huu, V. and Nguyen-Thoi, T. (2018), "Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CS-DSG3", Int. J. Comput. Meth., 17, 1850133. https://doi.org/10.1142/S0219876218501335.
  52. Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Phys. Rev. B, 68, 165401. https://doi.org/10.1103/PhysRevB.68.165401.
  53. Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005.
  54. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments", Nonlin. Dyn., 70, 735-754. https://doi.org/10.1007/s11071-012-0491-2.
  55. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39, 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
  56. Zamani Nejad, M. and Taghizadeh, T. (2017), "Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory", Int. J. Appl. Mech., 9, 1750011. https://doi.org/10.1142/S1758825117500119.
  57. Zhang, L.W. and Liew, K.M. (2015), "Geometrically nonlinear large deformation analysis of functionally graded carbon nanotube reinforced composite straight-sided quadrilateral plates", Comput. Meth. Appl. Mech. Eng., 295, 219-239. https://doi.org/10.1016/j.cma.2015.07.006.
  58. Zhang, L.W., Cui, W.C. and Liew, K.M. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges", Int. J. Mech. Sci., 103, 9-21. https://doi.org/10.1016/j.ijmecsci.2015.08.021.
  59. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.
  60. Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng A, 447, 51-57. https://doi.org/10.1016/j.msea.2006.10.054.