DOI QR코드

DOI QR Code

Micromechanical investigation for the probabilistic behavior of unsaturated concrete

  • Chen, Qing (Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, University of Mining & Technology) ;
  • Zhu, Zhiyuan (School of Materials Science and Engineering, Tongji University) ;
  • Liu, Fang (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Li, Haoxin (Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education) ;
  • Jiang, Zhengwu (Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education)
  • 투고 : 2019.08.07
  • 심사 : 2020.07.19
  • 발행 : 2020.08.25

초록

There is an inherent randomness for concrete microstructure even with the same manufacturing process. Meanwhile, the concrete material under the aqueous environment is usually not fully saturated by water. This study aimed to develop a stochastic micromechanical framework to investigate the probabilistic behavior of the unsaturated concrete from microscale level. The material is represented as a multiphase composite composed of the water, the pores and the intrinsic concrete (made up by the mortar, the coarse aggregates and their interfaces). The differential scheme based two-level micromechanical homogenization scheme is presented to quantitatively predict the concrete's effective properties. By modeling the volume fractions and properties of the constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the material's inherent randomness. Monte Carlo simulations are adopted to reach the different order moments of the effective properties. A distribution-free method is employed to get the unbiased probability density function based on the maximum entropy principle. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, commonly used probability density functions and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material's effective properties. Finally, the effects of the saturation degrees and the pore shapes on the concrete macroscopic probabilistic behaviors are investigated based on our proposed stochastic micromechanical framework.

키워드

과제정보

This work is supported by National key research and development plan (2018YFB2101000). This work is also supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (4182780021), National Natural Science Foundation of China (51878496, 51878479, 51878480, 51878481), Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, China University of Mining & Technology and the Funds of Fundamental Research Plan for the Central Universities. The authors declare that they have no conflict of interest.

참고문헌

  1. Banchs, R.E., Klie, H., Rodriguez, A., Thomas, S.G. and Wheeler, M.F. (2007), "A neural stochastic multiscale optimization framework for sensor-based parameter estimation", Integr. Comput. Aid. Eng., 14, 213-223. https://doi.org/10.3233/ICA-2007-14302.
  2. Berryman, J.G. (1980), "Long-wave propagation in composite elastic media II. Ellipsoidal inclusion", J. Acoust. Soc. Am., 68(6), 1820-1831. https://doi.org/10.1121/1.385172.
  3. Chakraborty, A. and Rahman, S. (2008), "Stochastic multiscale models for fracture analysis of functionally graded materials", Eng. Fract. Mech., 75, 2062-2086. https://doi.org/10.1016/j.engfracmech.2007.10.013.
  4. Chakraborty, A. and Rahman, S. (2009), "A parametric study on probabilistic fracture of functionally graded composites by a concurrent multiscale method", Probab. Eng. Mech., 24, 438-451. https://doi.org/10.1016/j.probengmech.2009.01.001.
  5. Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G. and Li, H.X. (2018a), "The effective properties of saturated concrete healed by EDM with the ITZs", Comput. Concrete, 21(1), 67-74. https://doi.org/10.12989/cac.2018.21.1.067.
  6. Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G. and Wang, Y.Q. (2016a), "Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method", Mater. Struct., 49(12), 5183-5193. https://doi.org/10.1617/s11527-016-0853-1.
  7. Chen, Q., Jiang, Z.W., Yang, Z.H., Zhu, H.H., Ju, J.W., Yan, Z.G. and Wang, Y.Q. (2017a), "Differential-scheme based micromechanical framework for unsaturated concrete repaired by the electrochemical deposition method", Acta Mech., 228(2), 415-431. https://doi.org/10.1007/s00707-016-1710-6.
  8. Chen, Q., Jiang, Z.W., Zhu, H.H., Ju, J.W. and Yan, Z.G. (2017b), "Micromechanical framework for saturated concrete repaired by the electrochemical deposition method with interfacial transition zone effects", Int. J. Damage Mech., 26(2), 210-228. https://doi.org/10.1177/1056789516672163.
  9. Chen, Q., Jiang, Z.W., Zhu, H.H., Ju, J.W., Yan, Z.G., Li, H.X. and Timon, R. (2018b), "A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method with the bonding effects", Int. J. Damage Mech., 27(9), 1307-1324. https://doi.org/10.1177/1056789518773633.
  10. Chen, Q., Nezhad, M.M., Fisher, Q. and Zhu, H.H. (2016b), "Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone", Int. J. Rock Mech. Min., 84, 95-104. https://doi.org/10.1016/j.ijrmms.2016.02.007.
  11. Chen, Q., Wang, H., Jiang, Z.W., Zhu, H.H., Ju, J.W. and Yan, Z.G. (2020), "Reaction-degree-based multi-scale predictions for the effective properties of ultra-high-performance concrete", Mag. Concrete Res., 1-12. https://doi.org/10.1680/jmacr.19.00415.
  12. Chen, Q., Zhu, H.H., Ju, J.W., Guo, F., Wang, L.B., Yan, Z.G., Deng, T. and Zhou, S. (2015a), "A stochastic micromechanical model for multiphase composite containing spherical inhomogeneities", Acta Mech., 226(6), 1861-1880. https://doi.org/10.1007/s00707-014-1278-y.
  13. Chen, Q., Zhu, H.H., Ju, J.W., Jiang, Z.W., Yan, Z.G. and Li, H.X. (2018c), "Stochastic micromechanical predictions for the effective properties of concrete considering the interfacial transition zone effects", Int. J. Damage Mech., 27(8), 1252-1271. https://doi.org/10.1177/1056789517728501.
  14. Chen, Q., Zhu, H.H., Ju, J.W., Yan, Z.G., Wang, C.H. and Jiang, Z.W. (2018d), "A stochastic micromechanical model for fiber-reinforced concrete using maximum entropy principle", Acta Mech., 229(7), 2719-2735. https://doi.org/10.1007/s00707-018-2135-1.
  15. Chen, Q., Zhu, H.H., Yan, Z.G., Deng, T. and Zhou, S. (2015b), "Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on Mori-Tanaka method", J. Build Struct., 36(1), 98-103. https://doi.org/10.6052/0459-1879-14-147.
  16. Chen, Q., Zhu, H.H., Yan, Z.G., Deng, T. and Zhou, S. (2015c), "Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on self-consistent method", Chin. J. Theor. Appl. Mech., 47(2), 367-371. https://doi.org/10.6052/0459-1879-14-147.
  17. Chen, Q., Zhu, H.H., Yan, Z.G., Ju, J.W., Jiang, Z.W. and Wang, Y.Q. (2016c), "A multiphase micromechanical model for hybrid fiber reinforced concrete considering the aggregate and ITZ effects", Constr. Build. Mater., 114, 839-850. https://doi.org/10.1016/j.conbuildmat.2016.04.008.
  18. Dong, H., Yang, Z.H., Guan, X.F. and Yang, Z.Q. (2020), "Stochastic second-order two-scale method for predicting the mechanical properties of composite materials with random interpenetrating phase", Commun. Math. Res., 36(2), 193-210. https://doi.org/10.4208/cmr.2020-0007.
  19. Er, G.K. (1998), "A method for multi-parameter PDF estimation of random variables", Struct. Saf., 20(1), 25-36. https://doi.org/10.1016/S0167-4730(97)00029-5.
  20. Ferrante, F. and Graham-Brady, L. (2005), "Stochastic simulation of non-Gaussian/non-stationary properties in a functionally graded plate", Comput. Meth. Appl. Mech. Energy, 194, 1675-1692. https://doi.org/10.1016/j.cma.2004.03.020.
  21. Ferrante, F.J., Brady, L.L.G., Acton, K. and Arwade, S.R. (2008), "An overview of micromechanics‐based techniques for the analysis of microstructural randomness in functionally graded materials", AIP Conf. Proc., 973, 190-195. https://doi.org/10.1063/1.2896775.
  22. Guan, X.F., Liu, X., Jia, X., Yuan, Y., Cui, J.Z. and Mang, H.A. (2015), "A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete", Int. J. Solid. Struct., 56-57, 280-289. https://doi.org/10.1016/j.ijsolstr.2014.10.008.
  23. Guan, X.F., Yu, H.T. and Tian, X. (2016), "A stochastic second-order and two-scale thermo-mechanical model for strength prediction of concrete materials", Int. J. Numer. Meth. Eng., 108(8), 885-901. https://doi.org/10.1002/nme.523.
  24. Huang, Y., Xu, C., Li, H., Jiang, Z., Gong, Z., Yang, X. and Chen, Q. (2019), "Utilization of the black tea powder as multifunctional admixture for the hemihydrate gypsum", J. Clean. Prod., 210, 231-237. https://doi.org/10.1016/j.jclepro.2018.10.304.
  25. Jaynes, E.T. (1957), "Information theory and statistical mechanics", Phys. Rev., 106, 620-630. https://doi.org/10.1103/PhysRev.106.620.
  26. Jiang, Z.W., Yang, X.J., Yan, Z.G., Chen, Q., Zhu, H.H., Wang, C.H., Ju, J.W., Fang, Z.H. and Li, H.X. (2019), "A stochastic micromechanical model for hybrid fiber-reinforced concrete", Cement Concrete Compos., 102, 39-54. https://doi.org/10.1016/j.cemconcomp.2019.04.003.
  27. Ju, J.W. and Chen, T.M. (1994a), "Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities", Acta Mech., 103(1), 123-144. https://doi.org/10.1007/BF01180222.
  28. Ju, J.W. and Chen, T.M. (1994b), "Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities", Acta Mech., 103(1-4), 103-121. https://doi.org/10.1007/bf01180221.
  29. Ju, J.W. and Zhang, X.D. (1998), "Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers", Int. J. Solid. Struct., 35(9-10), 941-960. https://doi.org/10.1016/S0020-7683(97)00090-5.
  30. Li, H., Xu, C., Dong, B., Chen, Q., Gu, L., Yang, X. and Wang, W. (2020), "Differences between their influences of TEA and TEA.HCl on the properties of cement paste", Constr. Build. Mater., 239, 117797. https://doi.org/10.1016/j.conbuildmat.2019.117797.
  31. McLaughlin, R. (1977), "A study of the differential scheme for composite materials", Int. J. Eng. Sci., 15(4), 237-244. https://doi.org/10.1016/0020-7225(77)90058-1.
  32. Mura, T. (1987), Micromechanics of Defects in Solids, Kluwer Academic, Dordrecht, the Netherlands.
  33. Nezhad, M.M., Zhu, H.H., Ju, J.W. and Chen, Q. (2016), "A simplified multiscale damage model for the transversely isotropic shale rocks under tensile loading", Int. J. Damage Mech., 5(5), 705-726. https://doi.org/10.1177/1056789516639531.
  34. Norris, A.N. (1985), "A differential scheme for the effective modulus of composites", Mech. Mater., 4(1), 1-16. https://doi.org/10.1016/0167-6636(85)90002-x.
  35. Ostoja-Starzewski, M. (1993), "Micromechanics as a basis of stochastic finite elements and differences: an overview", Appl. Mech. Rev., 46(11S), 136-147. https://doi.org/10.1115/1.3122629.
  36. Rahman, S. (2009), "Multi-scale fracture of random heterogeneous materials", Ship. Offshore Struct., 4, 261-274. https://doi.org/10.1080/17445300903149046.
  37. Rahman, S. and Chakraborty, A. (2007), "A stochastic micromechanical model for elastic properties of functionally graded materials", Mech. Mater., 39(6), 548-563. https://doi.org/10.1016/j.mechmat.2006.08.006.
  38. Ross, C.A., Jerome, D.M., Tedesco, J.W. and Hughes, M.L. (1996), "Moisture and strain rate effect on concrete strength", ACI Mater. J., 96, 293-300.
  39. Rossi, P., Van Mier, J.G.M. and Boulay, C. (1992), "The dynamic behavior of concrete: influence of free water", Mater. Struct., 25(9), 509-514. https://doi.org/10.1007/BF02472446.
  40. Smith, J.C. (1976), "Experimental values for the elastic constants of a particulate-filled glassy polymer", J. Res. NBS, 80A, 45-49. https://doi.org/10.6028/jres.080A.008.
  41. Sun, L.Z. and Ju, J.W. (2004), "Elastoplastic modeling of metal matrix composites containing randomly located and oriented spheroidal particles", J. Appl. Mech.-T. ASME, 71(6), 774-785. https://doi.org/10.1115/1.1794699.
  42. Tomar, S.S., Zafar, S., Talha, M., Gao, W. and Hui, D. (2018), "State of the art of composite structures in non-deterministic framework: A review", Thin Wall. Struct., 132, 700-716. https://doi.org/10.1093/ecam/nel034.
  43. Wang, H.L. and Li, Q.B. (2007), "Prediction of elastic modulus and Poisson's ratio for unsaturated concrete", Int. J. Solid. Struct., 44(5), 1370-1379. https://doi.org/10.1016/j.ijsolstr.2006.06.028.
  44. Yaman, I.O., Hearn, N. and Aktan, H.M. (2002a), "Active and non-active porosity in concrete part I: experimental evidence", Mater. Struct., 35(3), 102-109. https://doi.org/10.1007/BF02482109.
  45. Yaman, I.O., Hearn, N. and Aktan, H.M. (2002b), "Active and non-active porosity in concrete part II: evaluation of existing models", Mater. Struct., 35(3), 110-116. https://doi.org/10.1007/BF02482110.
  46. Yan, Z.G., Chen, Q., Zhu, H.H., Ju, J.W., Zhou, S. and Jiang, Z.W. (2013), "A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method", Int. J. Solid. Struct., 50(24), 3875-3885. https://doi.org/10.1016/j.ijsolstr.2013.07.020.
  47. Yang, X., Liu, J., Li, H., Xu, L., Ren, Q. and Li, L. (2019), "Effect of triethanolamine hydrochloride on the performance of cement paste", Constr. Build. Mater., 200, 218-225. https://doi.org/10.1016/j.conbuildmat.2018.12.124.
  48. Yang, Z.H., Guan, X.F., Cui, J.Z., Dong, H., Wu, Y. and Zhang, J.Q. (2020), "Stochastic multiscale heat transfer analysis of heterogeneous materials with multiple random configurations", Commun. Comput. Phys., 27(2), 431-459. https://doi.org/10.4208/cicp.OA-2018-0311.
  49. Zhou, S., Zhu, H.H., Ju, J.W., Yan, Z.G. and Chen, Q. (2017), "Modeling microcapsule-enabled self-healing cementitious composite materials using discrete element method", Int. J. Damage Mech., 26(2), 340-357. https://doi.org/10.1177/1056789516688835.
  50. Zhu, H.H., Chen, Q., Ju, J.W., Yan, Z.G., Guo, F., Wang, Y.Q., Jiang, Z.W., Zhou, S. and Wu, B. (2015), "Maximum entropy based stochastic micromechanical model for a two-phase composite considering the inter-particle interaction effect", Acta Mech., 226(9), 3069-3084. https://doi.org/10.1007/s00707-015-1375-6.
  51. Zhu, H.H., Chen, Q., Yan, Z.G., Ju, J.W. and Zhou, S. (2014a), "Micromechanical model for saturated concrete repaired by electrochemical deposition method", Mater. Struct., 47, 1067-1082. https://doi.org/10.1617/s11527-013-0115-4.
  52. Zhu, H.H., Zuo, Y.L., Li, X.J., Deng, J. and Zhuang, X.Y. (2014b), "Estimation of the fracture diameter distributions using the maximum entropy principle", Int. J. Rock Mech. Min., 72, 127-137. https://doi.org/10.1016/j.ijrmms.2014.09.006.