Acknowledgement
BA would like to thank the Board of College and University Development (BCUD) (BCUD, Finance/2016-17/1596, dated 08/11/2016), University of Pune for provision of financial support BA also extends special gratitude to UGC-DAE CSR (University Grants Commission-Department of Atomic Energy Consortium for Scientific Research), Bhabha Atomic Research Centre, Mumbai, India (Grant No. UDCSR/MUM/AO/CRS-M-248/2017/1169, Dt. March 14, 2017) for Major Research Project. UKS would like to thank Indian National Science Academy (INSA), New Delhi, India for INSA Visiting Scientist Fellowship (SP/VF-9/2014-15/273/01 April, 2014) under the supervision of BA at Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India. UKS would like to acknowledge financial support from the projects funded by the DHESTBT, Government of West Bengal (memo no. 161(sanc)/ST/P/S&T/9G-50/2017 dated 8/2/2018).
References
- Ankamwar, B., Sur, U.K. and Das, P. (2016), "SERS study of bacteria using biosynthesized silver nanoparticles as the SERS substrate", Anal. Methods, 8(11), 2335-2340. https://doi.org/10.1039/C5AY03014E.
- Betz, J.F., Wei, W.Y., Cheng, Y., White, I.M. and Rubloff, G.W. (2014), "Simple SERS substrates: powerful, portable, and full of potential", Phys. Chem. Chem. Phys., 16(6), 2224-2239. https://doi.org/10.1039/C3CP53560F.
-
Borgohain, K., Murase, N. and Mahamuni, S. (2002), "Synthesis and properties of
$Cu_2O$ quantum particles", J. Appl. Phys., 92(3), 1292-1297. https://doi.org/10.1063/1.1491020. - Cejkova, J., Prokopec, V., Brazdova, S., Kokaislova, A., Matejka, P. and Stepanek, F. (2009), "Characterization of copper SERS-active substrates prepared by electro chemical deposition", Appl. Surf. Sci., 255(18), 7864-7870. https://doi.org/10.1016/j.apsusc.2009.04.152.
- Dendisova-Vyskovska, M., Prokopec, V., Clupek, M. and Matejka, P. (2012), "Comparison of SERS effectiveness of copper substrates prepared by different methods: what are the values of enhancement factors?", J. Raman Spectrosc., 43(2), 181-186. https://doi.org/10.1002/jrs.3022.
- Efrima, S. and Bronk, B.V. (1998), "Silver colloids impregnating or coating bacteria", J. Phys. Chem. B., 102(31), 5947-5950. https://doi.org/10.1021/jp9813903.
- Efrima, S. and Zeiri, L. (2009), "Understand ing SERS of bacteria", J. Raman Spectrosc., 40(3), 277-288. https://doi.org/10.1002/jrs.2121.
- Fleischmann, M., Hendra, P.J. and McQuillan, A. (1974), "Raman spectra of pyridine adsorbed at a silver electrode", J. Chem. Phys. Lett., 26(2), 163-166. https://doi.org/10.1016/0009-2614(74)85388-1.
- Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Jackson, M.A., Smith, P.C., Walter, D.G. and Natan, M.J. (1995), "Self-assembled metal colloid monolayers: an approach to SERS substrates", Science, 267(5204), 1629-1632. https://doi.org/10.1126/science.267.5204.1629.
- Gomez, M. and Lazzari, M. (2014), "Reliable and cheap SERS active substrates", Mater. Today, 7(17), 358-359. https://doi.org/10.1016/j.mattod.2014.08.001.
- Jarvis. R.M. and Goodacre, R. (2004), "Discrimination of bacteria using surface-enhanced Raman spectroscopy", Anal. Chem., 76(1), 40-47. https://doi.org/10.1021/ac034689c.
- Jeanmaire, D.L. and Van Duyne, R.P. (1977), "Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode", J. Electroanal. Chem., 84(1), 1-20. https://doi.org/10.1016/S0022-0728(77)80224-6.
- Jiang, Y.X., Li, J.F., Wu, D.Y., Yang, Z.L., Ren, B., Hu, J.W., Chow, Y.L. and Tian, Z.Q. (2007), "Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy", Chem. Comm., 44, 4608-4610. https://doi.org/10.1039/B711218A.
- Kahraman, M., Yazici, M.M., Sahin, F., Bayrak, O.F. and Culha, M. (2007), "Reproducible surface-enhanced Raman scattering spectra of bacter ia on aggregated silver nanoparticles", Appl. Spectrosc., 61(5), 479-485. https://doi.org/10.1366/000370207780807731.
- Khan, A. and Rashid, A. (2016), "A chemical reduction approach to the synthesis of copper nanoparticles", Int. Nano Lett., 6, 21-26. https://doi.org/10.1007/s40089-015-0163-6.
- Kim, Y.H., Kang, Y.S., Lee, W.J., Jo, B.G. and Jeong, J.H. (2006), "Synthesis of Cu nanoparticles prepared by using thermal decomposition of Cu-oleate complex", Mol. Cryst. Liq. Cryst., 445(1), 231-238. https://doi.org/10.1080/15421400500366522.
- Klung, H.P. and Alexander, L.E. (1974), X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, USA.
- Kreibig, U. and Vollmer, M. (1995), Optical Properties of Metal Clusters, Springer, Berlin, Germany.
- Li, J.F., Huang, Y.F., Ding, Y., Yang, Z.L., Li, S.B., Zhou, X.S., Fan, F.R., Zhang, W., Zhou, Z.Y., Wu, D.Y., Ren, B., Wang, Z.L. and Tian, Z.Q. (2010), "Shell-isolated nanoparticle-enhanced Raman spectroscopy", Nature, 464(7287), 392-395. https://doi.org/10.1038/nature08907.
- Liu, P., Wang, H., Li, X., Ruib, M. and Zeng, H. (2015), "Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media", RSC Adv., 5(97), 79738-79745. https://doi.org/10.1039/C5RA14933A.
- Liu, T.T., Lin, Y.H., Hung, C.S., Liu, T.J., Chen, Y., Huang, Y.C., Tsai, T.H., Wang, H.H., Wang, D.W., Wang, J.K., Wang, Y.L. and Lin, C.H. (2009), "A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall", PloS One, 4(5), e5470. https://doi.org/10.1371/journal.pone.0005470.
- Mahajan, C.M. and Takwale, M.G. (2014), "In termittent spray pyrolytic growth of nanocrystalline and highly oriented transparent conducting ZnO thin films: effect of solution spray rate", J. Alloys Compd., 584, 128-135. https://doi.org/10.1016/j.jallcom.2013.08.136.
- Moskovits, M. (2005), "Surface-enhanced Raman spectroscopy: a brief retrospective", J. Raman Spectrosc., 36(6-7), 485-496. https://doi.org/10.1002/jrs.1362.
- Mott, D., Galkowski, J., Wang, L., Luo, J. and Zhong, C.J. (2007), "Synthesis of size-controlled and shaped copper nanoparticles", Langmuir, 23(10), 5740-5745. https://doi.org/10.1021/la0635092.
- Muniz-Miranda, M., Gellini, C. and Giorgetti, E. (2011), "Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation", J. Phys. Chem. C., 115(12), 5021-5027. https://doi.org/10.1021/jp1086027.
- Nie, S. and Emory, S.R. (1997), "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering", Science, 275(5303), 1102-1106. https://doi.org/10.1126/science.275.5303.1102.
- Panigrahi, S., Kundu, S., Ghosh, S.K., Nath, S., Praharaj, S., Basu, S. and Pal, T. (2006), "Selective one-pot synthesis of copper nanorods under surfactantless condition", Polyhedron, 25(5), 1263-1269. https://doi.org/10.1016/j.poly.2005.09.006.
- Pettinger, B., Ren, B., Picardi, G., Schuster, R. and Ertl, G. (2004), "Nanoscale prob ing of adsorbed species by tip-enhanced Raman spectroscopy", Phys. Rev. Lett., 92(9), 096101. https://doi.org/10.1103/PhysRevLett.92.096101.
- Salzemann, C., Lisiecki, I., Urban, J. and Pileni, M.P. (2004), "Anisotropic copper nanocrystals synthesized in a supersaturated medium: nano crystal growth", Langmuir, 20(26), 11772-11777. https://doi.org/10.1021/la0492862.
- Sengupta, A., Laucks, M.L. and Dav is, E.J. (2005), "Surface-enhanced Raman spectroscopy of bacteria and pollen", Appl. Spectrosc., 59(8), 1016-1023. https://doi.org/10.1366/0003702054615124.
- Sharma, B., Cardinal, M.F., Kleinman, S.L., Greeneltch, N.G., Frontiera, R.R., Blaber, M.G., Schatz, G.C. and Van Duyne, R.P. (2013), "High-performance SERS substrates: advances and challenges", MRS Bull., 38(8), 615-624. https://doi.org/10.1557/mrs.2013.161.
- Silvestre, J.P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M. and Luong, J.H. (2004), "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media", J. Phys. Chem. B., 108(43), 16864-16869. https://doi.org/10.1021/jp047134+.
- Sur, U.K. (2010), "Surface-enhanced Raman spectroscopy", Resonance, 15(2), 154-164. https://doi.org/10.1007/s12045-010-0016-6.
- Sur, U.K. and Chowdhury, J. (2013), "Surface-enhanced Raman scattering: overview of a versatile technique used in electrochemistry and nanoscience", Curr. Sci., 105, 923-939.
- Sur, U.K., Ankamwar, B., Karmakar, S., Halder, A. and Das, P. (2018), "Green synthesis of silver nanoparticles using the plant extract of shikakai and reetha", Mater. Today, 5, 2321-2329. https://doi.org/10.1016/j.matpr.2017.09.236.
- Tian, Z.Q. and Ren, B. (2003), Encyclopedia of Electrochemistry, Wiley-VCH, Weinheim, Germany.
- Tian, Z.Q. and Ren, B. (2004), "Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy" Annu. Rev. Phys. Chem., 55, 197-229. https://doi.org/10.1146/annurev.physchem.54.011002.103833.
- Wang, H.H., Liu, C.Y., Wu, S.B., Liu, N.W., Peng, C.Y., Chan, T.H., Hsu, C.F., Wang, J.K. and Wang, Y. L. (2006), "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps", Adv. Mater., 18(4), 491-495. https://doi.org/10.1002/adma.200501875.
- Willets, K.A. and Van Duyne, R.P. (2007), "Localized surface plasmon resonance spectroscopy and sensing", Annu. Rev. Phys. Chem., 58, 267-297. https://doi.org/10.1146/annurev.physchem.58.032806.104607.
- Yin, M., Wu, C.K., Lou, Y., Burda, C., Koberstein, J.T., Zhu, Y. and O'Brien, S. (2005), "Copper oxide nanocrystals", J. Am. Chem. Soc., 127(26), 9506-9511. https://doi.org/10.1021/ja050006u.