References
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
- Akgoz, B. and Civalek, O. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752.
- Akgoz, B. and Civalek, O. (2017a), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039.
- Akgoz, B. and Civalek, O. (2017b), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
- Ansari, R. Gholami, R. and Darabi, M.A. (2011), "Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory", J. Therm. Stresses, 34(12), 1271-1281. https://doi.org/10.1080/01495739.2011.616802.
- Arani, A.G. and Jalaei, M.H. (2016), "Transient behavior of an orthotropic graphene sheet resting on orthotropic visco-Pasternak foundation", Int. J. Eng. Sci., 103, 97-113. https://doi.org/10.1016/j.ijengsci.2016.02.006.
- Asemi, S.R. Farajpour, A. Asemi, H.R. and Mohammadi, M. (2014), "Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM", Physica E Low Dimens. Syst. Nanostruct., 63, 169-179. https://doi.org/10.1016/j.physe.2014.05.009.
- Attia, A. Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., Int. J., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
- Aydogdu, M. (2009), "A general nonlocal beam theory : its application to nanobeam bending, buckling and vibration", Physica E Low Dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
- Aydogdu, M. and Arda, M. (2016), "Torsional vibration an alysis of double walled carbon nanotubes using nonlocal elasticity", Int. J. Mech. Mater. Des., 12(1), 71-84. https://doi.org/10.1007/s10999-014-9292-8.
- Barretta, R. and Marottide Sciarra, F. (2013), "A nonlocal model for carbon nanotubes under axial loads", Adv. Mater. Sci. Eng., 360935. https://doi.org/10.1155/2013/360935.
- Bedia, W.A., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Braz. J. Phys., 45(2), 225-233. https://doi.org/10.1007/s13538-015-0306-2.
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.
- Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessel. Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
- Civalek, O. and Demir, C. (2011a), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
- Civalek, O. and Demir, C. (2011b), "Buckling and bending analyses of cantilever carbon nanotubes using the eulerbernoulli beam theory based on non-local continuum model", Asian J. Civ. Eng., 12(5), 651-661.
- Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.
- Civalek, O. and Kiracioglu, O. (2007), "Discrete singular convolution for free vibration analysis of anisotropic rectangular plates", Math. Comput. Appl., 12(3), 151-160. https://doi.org/10.3390/mca12030151.
- Civalek, O., Uzun, B., Yayli, M.O. and Akgoz, B. (2020), "Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method", Eur. Phys. J. Plus, 135(4), 381. https://doi.org/10.1140/epjp/s13360-020-00385-w.
- Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal con tinuum and nonlocal discrete models", Appl. Math. Model., 37(22), 9355-9367. https://doi.org/10.1016/j.apm.2013.04.050.
- Demir, C. and Civalek, O. (2017a), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.
- Demir, C. and Civalek, O. (2017b), "On the analysis of microbeams", Int. J. Eng. Sci, 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
- Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., Int. J., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
- Ebrahimi, F. and Nasirzadeh, P. (2015), "A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method", J. Theor. Appl. Mech., 53(4), 1041-1052. https://doi.org/10.15632/jtam-pl.53.4.1041.
- Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory", J. Mech. Sci. Technol., 29(9), 3797-3083. https://doi.org/10.1007/s12206-015-0826-2.
- Ece, M.C. and Aydogdu, M. (2007), "Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes", Acta Mechanica, 190(1-4), 185-195. https://doi.org/10.1007/s00707-006-0417-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Gopalakrishnan, S. and Narendar, S. (2013), Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer International Publishing, Switzerland.
- Gurtin, M.E. and Murdoch, A.I. (1975a), "Addend a to our paper: A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 59(4), 389-390. https://doi.org/10.1007/BF00250426.
- Gurtin, M.E. and Murdoch, A.I. (1975b), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375.
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.
- Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062.
- Heydarpour, Y. and Malekzadeh, P. (2019), "Dynamic stability of cylindrical nanoshells under combined static and periodic axial loads", J. Braz. Soc. Mech. Sci. Eng., 41(4), 184. https://doi.org/10.1007/s40430-019-1675-1.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56. https://doi.org/10.1038/354056a0.
- Jalaei, M.H. and Arani, A.G. (2018), "Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions", Compos. Part B Eng., 142, 117-130. https://doi.org/10.1016/j.compositesb.2017.12.053.
- Jalaei, M.H., Arani, A.G. and Tourang, H. (2018), "On the dynamic stability of viscoelastic graphene sheets", Int. J. Eng. Sci., 132, 16-29. https://doi.org/10.1016/j.ijengsci.2018.07.002.
- Jalaei, M.H., Arani, A.G. and Nguyen-Xuan, H. (2019), "Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory", Int. J. Mech. Sci., 161, 105043. https://doi.org/10.1016/j.ijmecsci.2019.105043.
- Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Eur. J. Mech. A Solids, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
- Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E Low Dimens. Syst. Nanostruct., 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002.
- Koiter, W.T. (1964), "Couple stresses in the theory of elasticity: I and II", Proc. K. Ned. Akad. Wet. B Phys. Sci., 67, 17-44.
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002.
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity ", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Mercan, K. and Civalek, O. (2017), "Buckling analysis of silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B Eng., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067.
- Mercan, K., Numanoglu, H.M., Akgoz, B., Demir, C. and Civalek, O. (2017), "Higher-order continuum theories for buckling response of silicon carbide nanowires (SiCNWs) on elastic matrix", Arch. Appl. Mech., 87(11), 1797-1814. https://doi.org/10.1007/s00419-017-1288-z.
- Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3(1), 1-7. https://doi.org/10.1007/BF02327219.
- Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in lin ear elasticity", Arch. Ration. Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946.
- Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory ", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
- Murmu, T. and Adhikari, S. (2010), "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", J. Appl. Phys., 108(12), 123507. https://doi.org/10.1063/1.3520404.
- Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019.
- Narendar, S. and Gopalakrishnan, S. (2009), "Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes", Comput. Mater. Sci., 47(2), 526-538. https://doi.org/10.1016/j.commatsci.2009.09.021.
- Narendar, S. (2012), "Spectral finite element and nonlocal continuum mechanics based formulation for torsional wave propagation in nanorods", Finite Elem. Anal. Des., 62, 65-75. https://doi.org/10.1016/j.finel.2012.06.012.
- Numanoglu, H.M. and Civalek, O. (2019), "On the dynamics of small-sized structures", Int. J. Eng. Sci., 145, 103164. https://doi.org/10.1016/j.ijengsci.2018.05.001.
- Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, USA.
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the an alysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
- Sahmani, S. and Safaei, B. (2019), "Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal str ess and microstructural strain gradient size effects", Thin Wall. Struct., 140, 342-356. https://doi.org/10.1016/j.tws.2019.03.045.
- Schrlau, M.G. (2011), "Carbon nanotube-based sensors: overview", Compr. Biomater., 3, 519-528. https://doi.org/10.1016/B978-0-08-055294-1.00120-3
- Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling an alysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
- Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on th ermal buckling properties of doublewalled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001.
- Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.
- Uzun, B., Numanoglu, H. and Civalek, O. (2018), "Free vibration analysis of BNNT with different cross-Sections via nonlocal FEM", J. Comput. Appl. Mech., 49(2), 252-260. https://doi.org/10.22059/jcamech.2018.
- Uzun, B. and Civalek, O. (2019a), "Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials", Math. Comput. Appl., 24(2), 38. https://doi.org/10.3390/mca24020038.
- Uzun, B. and Civalek, O. (2019b), "Free vibration analysis silicon nanowires surrounded by elastic matrix by nonlocal finite element method", Adv. Nano Res., Int. J., 7(2), 99-108. https://doi.org/10.12989/anr.2019.7.2.099.
-
Uzun, B. and Yayli, M.O. (2020), "Nonlocal vibration analysis of Ti-6Al-4V/
$ZrO_2$ functionally graded nanobeam on elastic matrix", Arab. J. Geosci., 13(4), 1-10. https://doi.org/10.1007/s12517-020-5168-4. - Uzun, B., Yayli, M.O. and Deliktas, B. (2020), "Free vibration of FG nanobeam using a finite-element method ", Micro Nano Lett., 15(1), 35-40. https://doi.org/10.1049/mnl.2019.0273.
- Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010), "Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress", Appl. Phys. A, 99(4), 907-911. https://doi.org/10.1007/s00339-010-5666-4.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yayli, M.O. (2016), "A compact analytical method for vibration analysis of single-walled carbon nanotubes with restrained boundary conditions", J. Vib. Control, 22(10), 2542-2555. https://doi.org/10.1177/1077546314549203.
- Yayli, M.O. (2017), "Buckling analysis of a cantilever single-walled carbon nanotube embedded in an elastic medium with an attached spring", Micro Nano Lett., 12(4), 255-259. https://doi.org/10.1049/mnl.2016.0662.
- Yayli, M.O. (2018), "On the torsional vibrations of restrained nanotubes embedded in an elastic medium", J. Braz. Soc. Mech. Sci. Eng., 40(9), 419. https://doi.org/10.1007/s40430-018-1346-7.
- Yayli, M.O. (2019), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428.
- Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
- Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams in cluding surface stress effects", Smart Struct. Syst., Int. J., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
Cited by
- Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157