DOI QR코드

DOI QR Code

Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation

  • Farazin, Ashkan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2020.04.29
  • Accepted : 2020.07.08
  • Published : 2020.08.25

Abstract

This research investigates the effect of single walled carbon nanotubes (SWCNTs) dimensions in terms of diameter on the mechanical properties (longitudinal and transverse Young's modulus) of the simulated nanocomposites by molecular dynamics (MDs) method. MDs utilized to create nanocomposite models consisting of five case studies of SWCNTs with different chiralities (5, 0), (10, 0), (15, 0), (20, 0) and (25, 0) as the reinforcement and using polymethyl methacrylate (PMMA) as the common matrix. The results show that with increasing of SWCNTs diameter, the mechanical and physical properties increase. It is important that with the increasing of SWCNTs diameter, density, longitudinal and transverse Young's modulus, shear modulus, poisson's ratio, and bulk modulus of simulated nanocomposite from (5, 0) to (25, 0) approximately becomes 1.54, 3, 2, 1.43, 1.11 and 1.75 times more than (5, 0), respectively. Then to validate the results, the stiffness matrix is obtained by Materials studio software.

Keywords

Acknowledgement

The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 988093/3.

References

  1. Aghadavoudi, F., Golestanian, H. and Beni, Y.T. (2016), "Investigation of CNT defects on mechanical behavior of crosslinked epoxy-based nanocomposites by molecular dynamics", Int. J. Adv. Des. Manuf. Technol., 9(1), 137-146.
  2. Aghadavoudi, F., Golestanian, H. and Tadi Beni, Y. (2018), "Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling", Polym. Compos., 39(12), 4513-4523. https://doi.org/10.1002/pc.24557.
  3. Aghadavoudi, F., Golestanian, H. and Zarasvand, K.A. (2019), "Elastic behaviour of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: experimental and multiscale modelling", Polym. Bull., 76(8), 4275-4294. https://doi.org/10.1007/s00289-018-2602-9.
  4. AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A Solids, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008.
  5. Al-Haik, M., Pham, T.T., Skandani, A.A., Bond, J. and El-Genk, M.S. (2015), "Effect of the chirality on the radiation induced damage of carbon nanotubes/polyethylene composites: a molecular dynamics approach", J. Comput. Theor. Nanosci., 12(2), 270-279. https://doi.org/10.1166/jctn.2015.3728.
  6. Arash, B., Wang, Q. and Varadan, V.K. (2014), "Mechanical properties of carbon nanotub e/polymer composites", Sci. Rep., 4, 6479. https://doi.org/10.1038/srep06479.
  7. Babaeeian, M. and Mohammadimehr, M. (2020), "Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method", Opt. Lasers Eng., 128, 106002. https://doi.org/10.1016/j.optlaseng.2020.106002.
  8. Chan, J.X., Wong, J.F., Hassan, A., Mohamad, Z. and Othman, N. (2020), "Mechanical properties of wollastonite reinforced thermoplastic composites: A review", Polym. Compos., 41(2), 395-429. https://doi.org/10.1002/pc.25403.
  9. Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.
  10. Farazin, A., Aghdam, H.A., Motififard, M., Aghadavoudi, F., Kordjamshidi, A., Saber-Samandari, S. and Khandan, A. (2019), "A polycaprolactone b io-nanocomposite bone substitute fabricated for femoral fracture approaches: molecular dynamic and micro-mechanical investigation", J. Nanoanalysis, 6(3), 172-184. https://doi:10.22034/jna.2019.584848.1134.
  11. Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S. and Khandan, A. (2020), "Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles", J. Appl. Comput. Mech. [In press] https://doi.org/10.22055/JACM.2020.32902.2097
  12. Farzinpour, M., Toghraie, D., Mehmandoust, B., Aghadavoudi, F. and Karimipour, A. (2020), "Molecular dynamics study of barrier effects on ferro-nanofluid flow in the presence of constant and time-dependent external magnetic fields", J. Mol. Liq., 113152. https://doi.org/10.1016/j.molliq.2020.113152.
  13. Firme III, C.P. and Bandaru, P.R. (2010), "Toxicity issues in the application of carbon nanotubes to biological systems", Nanomedicine, 6(2), 245-256. https://doi.org/10.1016/j.nano.2009.07.003.
  14. Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W. and Gates, T.S. (2003), "The stress-strain behavior of polymernanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/S0266-3538(03)00059-9.
  15. Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.
  16. Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2019), "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field ", J Sandw. Struct. Mater., 21(7), 2194-2218. https://doi.org/10.1177/1099636217743177.
  17. Hadipeykani, M., Aghadavoudi, F. and Toghraie, D. (2020), "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer-based epoxy nanocomposite reinforced by CNT: a statistical study", Physica A, 123995. https://doi.org/10.1016/j.physa.2019.123995.
  18. Haghighi, M., Khodadadi, A., Golestanian, H. and Aghadavoudi, F. (2020), "Effects of defects and functional groups on gr aphene and nanotube thermoset epoxy-based nanocomposites mechanical properties using molecular dynamics simulation", Polym. Polym. Compos., 0967391120929075. https://doi.org/10.1177/0967391120929075.
  19. Honma, M., Kawahara, K., Tsuda, T., Kurihara, A. and Okabe, T. (2020), "Effects of thermoplastic resin properties on fracture mode and welding strength with welding technology of thermoset FRP", Mater. Syst., 37, 43-51. https://doi.org/10.34401/materialssystem.37.0_43.
  20. Iuvshin, A.M., Tretyakov, S.D., Andreev, Y.S. and Gibadullin, I.N. (2020), "Thermoplastic polymer composites production by automated fiber placement method", Key Eng. Mater., 836, 78-83. https://doi.org/10.4028/www.scientific.net/KEM.836.78.
  21. Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z.S., Esmaeili, S., Sheikhbahaei, E. and Kamyab, B. (2020), "A mitral heart valve prototype using sustainable polyurethane polymer: fabricated by 3D bioprinter, tested by molecular dynamics simulation", AUT J. Mech. Eng. [In press] https://doi.org/10.22060/AJME.2020.17450.5862.
  22. Laurent, C., Flahaut, E. and Peigney, A. (2010), "The weight and density of carbon nanotubes versus the number of walls and diameter", Carbon, 48(10), 2994-2996. https://doi.org/10.1016/j.carbon.2010.04.010.
  23. Liu, H., Liu, H. and Yang, J. (2017), "Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium", Physica E Low Dimens. Syst. Nanostruct., 93, 153-159. https://doi.org/10.1016/j.physe.2017.05.022.
  24. Liu, T., Zhang, H., Zuo, M., Zhang, W., Zhu, W. and Zheng, Q. (2019), "Selective location and migration of poly (methyl methacrylate)-grafted clay nanosheets with low grafting density in poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) blends", Compos. Sci. Technol., 169, 110-119. https://doi.org/10.1016/j.compscitech.2018.11.021
  25. Low, S. and Shon, Y.S. (2018), "Molecular interactions between pre-formed metal nanoparticles and graphene families", Adv. Nano Res., Int. J., 6(4), 357-375. https://doi.org/10.12989/anr.2018.6.4.357.
  26. Mahboob, M. and Islam, M.Z. (2013), "Molecular dynamics simulations of defective CNT-polyethylene composite systems", Comput. Mater. Sci, 79, 223-229. https://doi.org/10.1016/j.commatsci.2013.05.042.
  27. Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on IV characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.
  28. Marcadon, V., Brown, D., Herve, E., Mele, P., Alberola, N.D. and Zaoui, A. (2013), "Confrontation between molecular dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites", Comput. Mater. Sci., 79, 495-505. https://doi.org/10.1016/j.commatsci.2013.07.002.
  29. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
  30. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431.
  31. Mohammadimehr, M., Emdadi, M. and Rousta Navi, B. (2018a), "Dynamic stability an alysis of microcomposite annular sandwich plate with carbon nanotube reinforced composite facesheets based on modified strain gradient theory", J. Sandw. Struct. Mater., 22(4), 1199-1234. https://doi.org/10.1177/1099636218782770.
  32. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Alavi, S.M.A., Alambeigi, K., Bamdad M., Yazdani, R. and Hanifehlou, S. (2018b), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405.
  33. Mortazavi, B., Cuniberti, G. and Rabczuk, T. (2015), "Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study", Comput. Mater. Sci., 99, 285-289. https://doi.org/10.1016/j.commatsci.2014.12.036.
  34. Montazeri, A., Sadeghi, M., Naghdabadi, R. and Rafii-Tabar, H. (2011), "Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites", Phys. Lett. A, 375(14), 1588-1597. https://doi.org/10.1016/j.physleta.2011.02.065.
  35. Mousa, W.F., Kobayashi, M., Shinzato, S., Kamimura, M., Neo, M., Yoshihara, S. and Nakamura, T. (2000), "Biological and mechanical properties of PMMA-based bioactive bone cements", Biomaterials, 21(21), 2137-2146. https://doi.org/10.1016/S0142-9612(00)00097-1.
  36. Nawafleh, N. and Celik, E. (2020), "Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance", Addit. Manuf., 33, 101109. https://doi.org/10.1016/j.addma.2020.101109.
  37. Odegard, G.M., Clancy, T.C. and Gates, T.S. (2017), Modeling of the Mechanical Properties of Nanoparticle/Polymer Composites, Jenny Stanford Publishing, USA.
  38. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, Int. J., 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  39. Rostami, R. and Mohammadimehr, M. (2020), "Dynamic stability and bifurcation analysis of sandwich plate with considering FG core and FG-CNTRC face sheets", J. Sandw. Struct. Mater. [In press] https://doi.org/10.1177/1099636220909766.
  40. Schichtel, J.J. and Chattopadhyay, A. (2020), "Modeling thermoset polymers using an improved molecular dynamic crosslinking methodology", Comput. Mater. Sci., 174, 109469. https://doi.org/10.1016/j.commatsci.2019.109469.
  41. Shahedi, S. and Mohammadimehr, M. (2019), "Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments", Mech. Based Des. Struct. Mach., 1-31. https://doi.org/10.1080/15397734.2019.1646661.
  42. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126(3), 250-257. https://doi.org/10.1115/1.1751182.
  43. Smart, S.K., Cassady, A.I., Lu, G.Q. and Martin, D.J. (2006), "The biocompatibility of carbon nanotubes", Carbon, 44(6), 1034-1047. https://doi.org/10.1016/j.carbon.2005.10.011.
  44. Sutrakar, V.K., Subramanya, N. and Mahapatra, D.R. (2015), "Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study", Adv. Nano Res., Int. J., 3(3), 143-168. https://doi.org/10.12989/anr.2015.3.3.143.
  45. Tarfaoui, M., Lafdi, K. and El Moumen, A. (2016), "Mechanical properties of carbon nanotubes-based polymer composites", Compos. Part B Eng., 103, 113-121. https://doi.org/10.1016/j.compositesb.2016.08.016.
  46. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  47. Yang, S., Yu, S., Kyoung, W., Han, D.S. and Cho, M. (2012), "Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections", Polymer, 53(2), 623-633. https://doi.org/10.1016/j.polymer.2011.11.052.
  48. Yu, S., Yang, S. and Cho, M. (2009), "Multi-scale modeling of cross-linked epoxy nanocomposites", Polymer, 50(3), 945-952. https://doi.org/10.1016/j.polymer.2008.11.054.

Cited by

  1. Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation vol.27, pp.2, 2020, https://doi.org/10.12989/cac.2021.27.2.111
  2. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  3. Molecular dynamics investigation of pull-in instability in graphene sheet under electrostatic and van der Waals forces vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.173