DOI QR코드

DOI QR Code

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz (Hassan II University of Casablanca, National Higher School of Arts and Crafts of Casablanca (ENSAM Casablanca), Laboratory of Structural Engineering, Intelligent Systems and Electrical Energy)
  • Received : 2020.04.05
  • Accepted : 2020.07.06
  • Published : 2020.08.25

Abstract

In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

Keywords

References

  1. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Inf luences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  2. Alimirzaei, S., Mohammad imehr, M. and Tounsi, A. (2019), "Nonlinear analysis of visco elastic micro-composite beam with geometr ical imperf ection using FEM: MSGT electro-magneto-elastic bend ing, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  3. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: vibr ation analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  4. Balubaid, M., Tounsi, A., Dakhel, B., Mahmoud, S.R. (2019), "Free vibration inv estigation of FG nanoscale plate using nonlocal two var iables integral refin ed plate theory ", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  5. Bao, W.X., Zhu, C.C. and Cu i, W.Z. (2004), "Simulation of Young's modulus of single-walled carbon n anotubes by molecu lar dynamics", Physica B Cond ens. Matter, 352(1-4), 156-163. https://doi.org/10.1016/j.physb.2004.07.005.
  6. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for b ending and bu ckling analysis of a nonlocal str ain grad ient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  7. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A.J., Bourada, F., Mahmoud, S.R., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  8. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouad ji, T.M. (2018), "Critical buck ling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  9. Bernholc, J., Brabec, C., Nardelli, B.M., Maiti, A., Roland, C. and Yakobson, B.I. (1998), "Theory of growth and mechanical properties of nanotubes", Appl. Phys. A, 67, 39-46. https://doi.org/10.1007/s003390050735.
  10. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  11. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A, Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., Int. J., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  12. Bousahla, A.A., Bourada, F, Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first sheard eformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  13. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi A.W., Tounsi, A.D. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  14. Bower, C., Rosen, R., Jin, L., Han, J. and Zhou, O. (1999), "Deformation of carbon nanotubes in nanotube-polymer composites", Appl. Phys. Lett., 74(22), 3317-3319. https://doi.org/10.1063/1.123330.
  15. Brush, D. and Almroth, B. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill, New York, USA.
  16. Calvert, P. (1999), "A recipe for strength", Nature, 399(6733), 210-211. https://doi.org/10.1038/20326.
  17. Chaabane, L.A., Bourad a, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A.M., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., Int. J., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  18. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. http://dx.doi.org/10.12989/anr.2015.3.4.193.
  19. Chemi, A., Zidour, M., Heireche, H., Rakr ak, K. and Bousahla, A.A. (2018), "Critical buckling load of chiral double-walled carbon nanotubes embedded in an elastic medium", Mech. Compos. Mater., 53, 827-836. https://doi.org/10.1007/s11029-018-9708-x.
  20. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng. Int. J., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  21. Donnell, L.H. (1934), "Stability of thin-walled tubes under torsion", N.A.S.A. Technical Report No. 479, Washington D.C., USA.
  22. Draoui, A., Zidour, A., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using FSDT", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  23. Elishakoff, I. and Bucas, S. (2013), "Buckling of a clamp ed-free double-walled carbon nano tube by the Bubnov-Galerkin method", J. Appl. Mech., 80(1), 011004. https://doi.org/10.1115/1.4006937.
  24. Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
  25. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  26. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  27. Eringen, A.C. and Edelen, D.G.B. (2005), "Design procedures for Installation of suction caissons in clay and other materials", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 158(2), 75-82. https://doi.org/10.1680/geng.2005.158.2.75.
  28. Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V. and Brooks, F.P. (1997), "Bending and buckling of carbon nanotubes under large strain", Nature, 389(6651), 582-584. https://doi.org/10.1038/39282.
  29. Gul, U. and Aydogdu, M. (2018), "Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B Eng., 137, 60-73. https://doi.org/10.1016/j.compositesb.2017.11.005.
  30. He, X.Q., Kitipornchai, S. and Liew, K.M. (2005), "Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der waals in teraction ", J. Mech. Phys. Solids, 53(2), 303-326. https://doi.org/10.1016/j.jmps.2004.08.003.
  31. Hedayati, H. and Sobhani Aragh, B. (2012), "Influence of graded agglomer ated CNTs on vibration of CNT-reinforced annular sectorial plates resting on Pasternak foundation", Appl. Math. Comput., 218(17), 8715-8735. https://doi.org/10.1016/j.amc.2012.01.080.
  32. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armch air and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  33. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., Int. J., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  34. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  35. Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104, 2089-2092. https://doi.org/10.1063/1.470966.
  36. Jena, S.K., Chakraverty, S., Malikan, M. and Torn abene, F. (2019), "Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mech. Based Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2019.1698437.
  37. Jena, S.K., Chakraverty, S. and Malikan, M. (2020a), "Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier's technique for vibration analysis of a function ally graded porous beam embedded in Kerr foundation", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01018-7.
  38. Jena, S.K., Chakraverty, S. and Malikan, M. (2020b), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory : an analytical approach", Eur. Phys. J. Plus, 135, 164. https://doi.org/10.1140/epjp/s13360-020-00176-3.
  39. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural beh aviour of functionally graded porous plates on elastic foundation using a new qu asi-3D model: Bend ing and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  40. Karami, B., Janghorban, M. and Tounsi, A. (2019), "On prestressed functionally graded anisotropic nanoshell in magnetic field", J. Braz. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  41. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of function ally graded anisotropic nanop lates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  42. Karami, B., Janghorban, M., Shahsavari, D., Tounsi, A. (2018), "A size-depend ent quasi-3D model for wave dispersion analysis of FG nanoplates", Int. J. Steel Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  43. Kerr, A.D. (1965), "A study of a new foundation model", Acta Mechanica, 1, 135-147. https://doi.org/10.1007/BF01174308.
  44. Kiani, K. (2015), "Axial buckling scrutiny of doubly orthogonal slender nanotubes via non local con tinuum theory", J. Mech. Sci. Technol., 29, 4267-4272. https://doi.org/10.1007/s12206-015-0923-2.
  45. Kuzumaki, T., Miyazawa, K., Ichinose, H. and Ito, K. (1998), "Processing of carbon nanotube reinforced aluminum composites", J. Mater. Res., 13(9), 2445-2449. https://doi.org/10.1557/JMR.1998.0340.
  46. Lourie, O. and Wagner, H.D. (1998), "Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy", J. Mater. Res., 13(9), 2418-2422. https://doi.org/10.1557/JMR.1998.0336.
  47. Lourie, O., Cox, D.M. and Wagner, H.D. (1998), "Buckling and collapse of embedded carbon nanotubes", Phys. Rev. Lett., 81, 1638-1641. https://doi.org/10.1103/PhysRevLett.81.1638.
  48. Lu, J.M., Wang, Y.C., Chang, J.C., Su, M.H. and Hwang, C.C. (2007a), "Molecular-dyn amic investigation of buckling of double-walled carbon nanotubes under uniaxial compression", J. Phys. Soc. Japan, 77(4), 044603. https://doi.org/10.1143/JPSJ.77.044603.
  49. Lu, W.B., Wu, J., Feng, X., Hwang, K.C. and Huang, Y. (2007b), "Buckling an alyses of double-wall carbon nanotubes: a shell theory based on the interatomic potential", J. Appl. Mech., 77(6), 061016. https://doi.org/10.1115/1.4001286.
  50. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
  51. Malikan, M. (2020), "On the plastic buckling of curved carbon nanotubes", Theor. Appl. Mech. Lett., 10(1), 46-56. https://doi.org/10.1016/j.taml.2020.01.004.
  52. Malikan, M. and Eremeyev, V.A. (2020), "Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a non linear Winkler substrate using the Rayleigh-Ritz method", Mater. Res. Express, 7(2), 025005. https://doi.org/10.1088/2053-1591/ab691c.
  53. Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Damped forced vibration an alysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory", Eng. Sci. Technol., Int. J., 21(4), 778-786. https://doi.org/10.1016/j.jestch.2018.06.001.
  54. Malikan, M., Dimitri, R. and Tornabene, F. (2019 a), "Transient response of oscillated carbon nanotubes with an internal and external damping", Compos. Part B Eng., 158, 198-205. https://doi.org/10.1016/j.compositesb.2018.09.092.
  55. Malikan, M., Nguyen, V.B., Dimitri, R. and Torn abene, F. (2019b), "Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory", Mater. Res. Express, 6(7), 075041. https://doi.org/10.1088/2053-1591/ab15ff.
  56. Medani, M., Benahmed, A., Zidour, A., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  57. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buck ling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
  58. Mohammadimehr, M., Saidi, A.R., Arani, A.G., Arefmanesh, A. and Han, Q. (2011), "Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(2), 498-506. https://doi.org/10.1177/2041298310392861.
  59. Nardelli, M.B, Yakobson, B.I. and Bernholc, J. (1998), "Brittle and ductile behavior in carbon nanotubes", Phys. Rev. Lett., 81, 4656-4659. https://doi.org/10.1103/PhysRevLett.81.4656.
  60. Pasternak, P. L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, Moscow, Russia.
  61. Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870. https://doi.org/10.1063/1.126500.
  62. Rahmani, R. and Antonov, M. (2019), "Axial and torsional buckling analysis of single- and multi-walled carbon nanotubes: finite element comparison between armchair and zigzag types", SN Appl. Sci., 1(9), 1134. https://doi.org/10.1007/s42452-019-1190-0.
  63. Rahmanian, M., Torkaman-Asadi, M.A., Firouz-Abadi, R.D. and Kouchakzadeh, M.A. (2016), "Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models", Physica B Condens. Matter, 484, 83-94. https://doi.org/10.1016/j.physb.2015.12.041.
  64. Ranjbartoreh, A.R., Ghorbanpour, A. and Soltani, B. (2007), "Double-walled carbon nanotube with surrounding elastic medium under axial pressure", Physica E Low Dimens. Syst. Nanostruct., 39(2), 230-239. https://doi.org/10.1016/j.physe.2007.04.010.
  65. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A.J., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, Int. J., 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  66. Ru, C.Q. (2001), "Axially compressed buckling of a double walled carbon nanotube embedded in an elastic medium", J. Mech. Phys. Solids, 49(6), 1265-1279. https://doi.org/10.1016/S0022-5096(00)00079-X.
  67. Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999.
  68. Schadler, L.S., Giannaris, S.C. and Ajayan, P.M. (2018), "Load transfer in carbon nanotubes epoxy composites", Appl. Phys. Lett., 73(26), 3842-3844. https://doi.org/10.1063/1.122911.
  69. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling an alysis of SWBNNT on Winkler foundation by non-local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  70. Shahsavari, D., Karami, B. and Mansouri, S. (2018), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on d ifferent nonlocal strain gradient theories", Eur. J. Mech. A Solids, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004.
  71. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved can tilevered microtubule by considering viscoelastic properties", Eng. Comput. [In press] https://doi.org/10.1007/s00366-020-01024-9.
  72. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, Int. J., 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245
  73. Teifouet, M., Robinson, A. and Adali, S. (2018), "Buckling of nonuniform and axially functionally graded nonlocal Timoshenko nanobeams on Winkler-Pasternak foundation", Compos. Struct., 206, 95-103. https://doi.org/10.1016/j.compstruct.2018.07.046.
  74. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the non local Donnell shell theory ", SN Appl. Sci., 2(3), 1-12. https://doi.org/10.1007/s42452-020-2182-9.
  75. Timesli, A., Braikat, B., Jamal, M. and Damil, N. (2017), "Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression", Comptes Rendus Mecanique, 345(2), 158-168. https://doi.org/10.1016/j.crme.2016.12.002.
  76. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of function ally graded microbeam", Struct. Eng. Mech., Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  77. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., Int. J., 34(4), 511-524. http://dx.doi.org/10.12989/scs.2020.34.4.511.
  78. Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.
  79. Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's modulus dependent on layer number", Phys. Rev. B, 65(23), 233407. https://doi.org/10.1103/PhysRevB.65.233407.
  80. Wagner, H.D., Lourie, O., Feldman, Y. and Tenne, R. (1998), "Stress induced fragmentation of multi-wall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188. https://doi.org/10.1063/1.120680.
  81. Wang, C.M. and Maa, Y.Q. (2006), "Buckling of double-walled carbon nanotubes modeled by solid shell elements", J. Appl. Phys., 99(11), 114317. https://doi.org/10.1063/1.2202108.
  82. Winkler, E. (1867), "Die Lehre von Elastizitat und Festigk eit (on Elasticity and Fixity)", Dominicus, Prague.
  83. Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics elasticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975. https://doi.org/10.1126/science.277.5334.1971.
  84. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration an alysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
  85. Wu, Y., Zhang, X., Leunga, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin Wall. Struct., 44(6), 667-676. https://doi.org/10.1016/j.tws.2006.05.003.
  86. Xie, B., Li, Q., Zeng, K, Sahmani, S. and Madyira, D.M. (2020), "Instability analysis of silicon cylindrical nanoshells under axial compressive load using molecular dynamics simulations", Microsyst. Technol., 1-12. https://doi.org/10.1007/s00542-020-04851-4.
  87. Yacobson, B.I., Brabec, C.J. and Bernhole, J. (1996), "Nanomechanics of carbon nanotubes: instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org 10.1103/PhysRevLett.76.2511.
  88. Yakobson, B.I. and Smalley, R.E. (1997), "Fullerene nanotubes: C1000000 and beyond", Am. Sci., 85(4), 324-337. https://www.jstor.org/stable/27856810.
  89. Yao, N. and Lordi, V. (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84(4), 1939. https://doi.org/10.1063/1.368323.
  90. Yao, X. and Han, Q. (2007), "The thermal effect on axially compressed buckling of a double-walled carbon nanotube", Eur. J. Mech. A Solids, 26(2), 298-312. https://doi.org/10.1016/j.euromechsol.2006.05.009.
  91. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  92. Zaouia, F.Z., Ouinasa, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B Eng., 159, 231-247. https://doi.org/10.1177/1099636217727577.
  93. Zhang, P., Lammert, P.E. and Crespi, V.H. (1998), "Plastic deformations of carbon nanotubes", Phys. Rev. B, 81, 5346-5349. https://doi.org/10.1103/PhysRevLett.81.5346.
  94. Zhanga, Y.Q., Liu, G.R., Qiang, H.F. and Li, G.Y. (2006), "Investigation of buckling of double-walled carbon nanotubes embedded in an elastic medium using the energy method", Int. J. Mech. Sci., 48(1), 53-61. https://doi.org/10.1016/j.ijmecsci.2005.09.010.
  95. Zhou, L., Cheny, F. and Zhao, Z. (2019), "Subharmonic bifurcation and chaos of a carbon nanotube supported by a Winkler and Pasternak foundation", Int. J. Mod. Phys. B, 33(19), 1950207. https://doi.org/10.1142/S0217979219502072.

Cited by

  1. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  2. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001