References
- VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
- VanRaden PM, Van Tassell CP, Wiggans GR, et al. Invited review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 2009;92:16-24. https://doi.org/10.3168/jds.2008-1514
- Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 2009;92:433-43. https://doi.org/10.3168/jds.2008-1646
- Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 2010;93:743-52. https://doi.org/10.3168/jds.2009-2730
- Baloche G, Legarra A, Salle G, et al. Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. J Dairy Sci 2014;97:1107-16. https://doi.org/10.3168/jds.2013-7135
- Carillier C, Larroque H, Robert-Granie C. Comparison of joint versus purebred genomic evaluation in the French multi-breed dairy goat population. Genet Sel Evol 2014;46:67. https://doi.org/10.1186/s12711-014-0067-3
- Cardoso FF, Gomes CCG, Sollero BP, et al. Genomic prediction for tick resistance in Braford and Hereford cattle. J Anim Sci 2015;93:2693-705. https://doi.org/10.2527/jas.2014-8832
- Kim S, Alam M, Park MN. Breeding initiatives for Hanwoo cattle to thrive as a beef industry- A review study. J Anim Breed Genom 2017;1:102-24. https://doi.org/10.12972/jabng.20170011
- Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 2014;15:478. https://doi.org/10.1186/1471-2164-15-478
- Aguilar I, Misztal I, Tsuruta S, Legarra A, Wang H. PREGSF90-POSTGSF90: Computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. In: Proceedings of the 10th World Congress of Genetics Applied to Livestock Production; 2014 Vancouver, Canada. https://doi.org/10.13140/2.1.4801.5045
- Boichard D. PEDIG: A FORTRAN package for pedigree analysis suited for large populations. 7th world congress on genetics applied to livestock production; 2002 August 19-23; Montpellier, France.
- Sargolzaei M, Iwaisaki H, Colleau JJ. CFC: A tool for monitoring genetic diversity. In: Proceedings of the 8th world congress on genetics applied to livestock production; 2006 August 13-18; Belo Horizonte, MG, Brasil. Minas Gerais, Brazil: Instituto Prociencia; 2006. p. 27-8.
- Henderson CR. Best linear unbiased estimation and prediction under a selection model. Biometrics 1975;31:423-47. https://doi.org/10.2307/2529430
- Misztal I, Tsuruta S, Lourenco D, Aguilar I, Legarra A, Vitezica Z. Manual for BLUPF90 family of programs [Internet]. Athens, GA, USA: University of Georgia; c2015 [cited 2019 Oct 4]. Available from: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf
- Weng Z, Zhang Z, Ding X, et al. Application of imputation methods to genomic selection in Chinese Holstein cattle. J Anim Sci Biotechnol 2012;3:6. https://doi.org/10.1186/2049-1891-3-6
- Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM. Genomic prediction in animals and plants: Simulation of data, validation, reporting, and benchmarking. Genetics 2013;193:347-65. https://doi.org/10.1534/genetics.112.147983
- Mehrban H, Lee DH, Moradi MH, Cho CI, Naserkheil M, Ibanez-Escriche N. Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture. Genet Sel Evol 2017;49:1. https://doi.org/10.1186/s12711-016-0283-0
- Shin EG, Lee SH, Yoon D. Accuracy of genomic estimated breeding value with Hanwoo cows in the commercial farms. J Agric Life Sci 2018;52:91-8. https://doi.org/10.14397/jals.2018.52.2.91
- Lee SH, Kim HC, Lim D, et al. Prediction of genomic breeding values of carcass traits using whole genome SNP data in Hanwoo (Korean cattle). CNU J Agric Sci 2012;39:357-64. https://doi.org/10.7744/CNUJAS.2012.39.3.357
- Park B, Choi T, Kim S, Oh SH. National genetic evaluation (system) of Hanwoo (Korean native cattle). Asian-Australas J Anim Sci 2013;26:151-6. https://doi.org/10.5713/ajas.2012.12439
- Choi TJ, Alam M, Cho CI, et al. Genetic parameters for yearling weight, carcass traits, and primal-cut yields of Hanwoo cattle. J Anim Sci 2015;93:1511-21. https://doi.org/10.2527/jas.2014-7953
- Lee DH. Methods for genetic parameter estimations of carcass weight, longissimus muscle area and marbling score in Korean cattle. J Anim Sci Technol 2004;46:509-16. https://doi.org/10.5187/JAST.2004.46.4.509
- Hwang JM, Kim S, Choy YH, Yoon BH, PC J. Genetic parameter estimation of carcass traits of Hanwoo steers. J Anim Sci Technol 2008;50:613-20. https://doi.org/10.5187/JAST.2008.50.5.613
- Roh SH, Kim BW, Kim HS, et al. Comparison between REML and Bayesian via Gibbs sampling algorithm with a mixed animal model to estimate genetic parameters for carcass traits in Hanwoo (Korean native cattle). J Anim Sci Technol 2004; 46:719-28. https://doi.org/10.5187/JAST.2004.46.5.719
- Roh SH, Kim CY, Won YS, Park CJ, Lee SS, Lee JG. Studies on genetic parameter estimation and sire selection to ultrasound measurement traits of Hanwoo. J Anim Sci Technol 2010;52:1-8 https://doi.org/10.5187/JAST.2010.52.1.001
- Kim JB, Kim DJ, Lee JK, Lee CY. Genetic relationship between carcass traits and carcass price of Korean cattle. Asian-Australas J Anim Sci 2010;23:848-54. https://doi.org/10.5713/ajas.2010.90555
- Lee DH, Kim HC. Genetic relationship between ultrasonic and carcass measurements for meat qualities in Korean steers. Asian-Australas J Anim Sci 2004;17:7-12. https://doi.org/10.5713/ajas.2004.7
- Choi T, Lim D, Park B, et al. Accuracy of genomic breeding value prediction for intramuscular fat using different genomic relationship matrices in Hanwoo (Korean cattle). Asian-Australas J Anim Sci 2017;30:907-11. https://doi.org/10.5713/ajas.15.0983
- Lee SS, Lee SH, Choi TJ, et al. Estimation of the accuracy of genomic breeding value in Hanwoo (Korean cattle). J Anim Sci Technol 2013;55:13-8. https://doi.org/10.5187/JAST.2013.55.1.13
- Badke YM, Bates RO, Ernst CW, Fix J, Steibel JP. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation. G3 (Bethesda) 2014;4:623-31. https://doi.org/10.1534/g3.114.010504
- Daetwyler HD, Villanueva B, Woolliams JA. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 2008;3:e3395. https://doi.org/10.1371/journal.pone.0003395
- Clark SA, Hickey JM, Daetwyler HD, van der Werf JH. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol 2012;44:4. https://doi.org/10.1186/1297-9686-44-4
- Berry DP, Garcia JF, Garrick DJ. Development and implementation of genomic predictions in beef cattle. Anim Front 2016; 6:32-8. https://doi.org/10.2527/af.2016-0005
Cited by
- Genetic Analysis of Major Carcass Traits of Korean Hanwoo Males Raised for Thirty Months vol.11, pp.6, 2020, https://doi.org/10.3390/ani11061792
- Main regulatory factors of marbling level in beef cattle vol.14, 2020, https://doi.org/10.1016/j.vas.2021.100219