References
- Annual Information Dairy Cows [Internet]. Department of Livestock Development; 2018 [cited 2019 Jan 15]. Available from: http://ict.dld.go.th/webnew/images/stories/stat_web/yearly/2561/land/T3-1.pdf (In Thai)
- Jakobsen JH, Madsen P, Jensen J, et al. Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. J Dairy Sci 2002;85:1607-16. https://doi.org/10.3168/jds.S0022-0302(02)74231-8
- Druet T, Jaffrezic F, Boichard D, Ducrocq V. Modeling lactation curves and estimation of genetic parameters for first lactation test-day records of French Holstein cows. J Dairy Sci 2003;86:2480-90. https://doi.org/10.3168/jds.S0022-0302(03)73842-9
- Muir BL, Kistemaker G, Jamrozik J, Canavesci F. Genetic parameters for a multiple-trait multiple-lactation random regression test-day model in Italian Holsteins. J Dairy Sci 2007;90:1564-74. https://doi.org/10.3168/jds.S0022-0302(07)71642-9
- Rekaya R, Carabano MJ, Toro MA. Use of test day yields for the genetic evaluation of production traits in Holstein-Friesian cattle. Livest Prod Sci 1999;57:203-17. https://doi.org/10.1016/S0301-6226(98)00181-X
- Gengler N, Tijani A, Wiggans GR, Misztal I. Estimation of (co)variance function coefficients for test day yield with a expectation-maximization restricted maximum likelihood algorithm. J Dairy Sci 1999;82:1849.e1-23. https://doi.org/10.3168/jds.S0022-0302(99)75417-2
- Zumbach B, Tsuruta S, Misztal I, Peters KJ. Use of a test day model for dairy goat milk yield across lactations in Germany. J Anim Breed Genet 2008;125:160-7. https://doi.org/10.1111/j.1439-0388.2007.00718.x
- Buaban S. Genetic evaluation of milk yields in crossbred dairy cattle using test-day records [master's thesis]. Bangkok, Thailand: Chulalongkorn University; 2000.
- Buaban S, Sanpote J. Comparison of breeding values predicted with lactation model and test-day model in crossbred dairy cattle. J Biotech Livest Prod 2010;5:33-59.
- Emmerling R, Gotz KU, Thaller G, Dempfle L. Optimization of test day models for genetic evaluation with small herd sizes. Interbull Bull 1999;22:106-11.
- Manual for BLUPF90 family of programs [Internet]. Athens, GA, USA: Animal and Dairy Science Department, University of Georgia; 2014 [cited 2014 May 10]. Available from: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf
- Miglior F, Gong W, Wang Y, Kistemaker GJ, Sewalem A, Jamrozik J. Short communication: Genetic parameters of production traits in Chinese Holsteins using a random regression test-day model. J Dairy Sci 2009;92:4697-706. https://doi.org/10.3168/jds.2009-2212
- Zavadilova L, Jamrozik J, Schaeffer LR. Genetic parameters for test-day model with random regressions for production traits of Czech Holstein cattle. Czech J Anim Sci 2005;50:142-54. https://doi.org/10.17221/4008-cjas
- Strabel T, Jamrozik J. Genetic analysis of milk production traits of Polish Black and White cattle using large-scale random regression test-day models. J Dairy Sci 2006;89:3152-63. https://doi.org/10.3168/jds.S0022-0302(06)72589-9
- Hammami H, Rekik B, Soyeurt H, Ben Gara A, Gengler N. Genetic parameters for tunisian holsteins using a test-day random regression model. J Dairy Sci 2008;91:2118-26. https://doi.org/10.3168/jds.2007-0382
- Konstantinov KV, Nieuwhof GJ, Hancock TP. Implementation of multiple traits multi lactation random regression test day model for production traits in Australia. Interbull Bull 2015;49:117-26.
- de Roos APW, Harbers AGF, de Jong G. Random herd curves in a test-day model for milk, fat, and protein production of dairy cattle in the Netherlands. J Dairy Sci 2004;87:2693-701. https://doi.org/10.3168/jds.S0022-0302(04)73396-2
- Berry DP, Buckley F, Dillon P, Evans RD, Rath M, Veerkamp RF. Genetic parameters for body condition score, body weight, milk yield, and fertility estimated using random regression models. J Dairy Sci 2003;86:3704-17. https://doi.org/10.3168/jds.S0022-0302(03)73976-9
- Misztal I, Strabel T, Jamrozik J, Mantysaari EA, Meuwissen THE. Strategies for estimating the parameters needed for different test-day models. J Dairy Sci 2000;83:1125-34. https://doi.org/10.3168/jds.S0022-0302(00)74978-2
- Pool MH, Janss LLG, Meuwissen THE. Genetic parameters of Legendre polynomials for first parity lactation curves. J Dairy Sci 2000;83:2640-9. https://doi.org/10.3168/jds.S0022-0302(00)75157-5
- Lopez-Romero P, Carabano MJ. Comparing alternative random regression models to analyse first lactation daily milk yield data in Holstein-Friesian cattle. Livest Prod Sci 2003;82:81-96. https://doi.org/10.1016/S0301-6226(03)00003-4
- Buaban S, Sanpote J, Duangjinda M, Boonkum W. Genetic model comparison between homogeneous and heterogeneous residual variance in Thai crossbred Holsteins using Random regression test-day model. Khon Kaen Agr J 2013;41:143-52 (In Thai).
- Olori VE, Hill WG, McGuirk BJ, Brotherstone S. Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. Livest Prod Sci 1999;61:53-63. https://doi.org/10.1016/S0301-6226(99)00052-4
- Hammon HM, Stürmer G, Schneider F, et al. Performance and metabolic and endocrine changes with emphasis on glucose metabolism in high-yielding dairy cows with high and low fat content in liver after calving. J Dairy Sci 2009;92:1554-66. https://doi.org/10.3168/jds.2008-1634
- Tamminga S, Luteijn PA, Meijer RGM. Changes in composition and energy content of liveweight loss in dairy cows with time after parturition. Livest Prod Sci 1997;52:31-8. https://doi.org/10.1016/S0301-6226(97)00115-2
- Weber C, Hametner C, Tuchscherer A, et al. Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows. J Dairy Sci 2013;96:165-80. https://doi.org/10.3168/jds.2012-5574
- Puangdee S, Duangjinda M, Boonkum W, Katawatin S, Buaban S, Thepparat M. Genetic associations between milk fat-to-protein ratio, milk production and fertility in the first two lactations of Thai Holsteins dairy cattle. Anim Sci J 2017;88:723-30. https://doi.org/10.1111/asj.12685
- Kistemaker GJ. The Canadian test-day model using Legendre polynomials. Interbull Bull 2003;31:202.
- Mrode RA, Swanson GJT, Paget MF. Implementation of the test day model for production traits in the UK. Interbull Bull 2003;31:193.
- DLD Dairy Sire Summary [Internet]. Department of Livestock Development; 2016 [cited 2017 Oct 20]. Available from: http://biotech.dld.go.th/webnew/Data/Sire_Summary/S2559/Sire-Summary-2559.pdf (In Thai)
- Abdullahpour R, Shahrbabak MM, Nejati-Javaremi A, Torshizi RV. Genetic analysis of daily milk, fat percentage and protein percentage of Iranian first lactation Holstein cattle. World Appl Sci J 2010;10:1042-6.
Cited by
- Changes in genetic parameters for milk yield and heat tolerance in the Thai Holstein crossbred dairy population under different heat stress levels and over time vol.104, pp.12, 2021, https://doi.org/10.3168/jds.2021-20151
- Genomic prediction of milk-production traits and somatic cell score using single-step genomic best linear unbiased predictor with random regression test-day model in Thai dairy cattle vol.104, pp.12, 2021, https://doi.org/10.3168/jds.2021-20263
- Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model vol.105, pp.1, 2022, https://doi.org/10.3168/jds.2020-19826