References
- Abbassi, R., Abbassi, A., Heidari, A.A. and Mirjalili, S. (2019), "An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models", Energy Convers. Manage., 179, 362-372. https://doi.org/10.1016/j.enconman.2018.10.069
- Abrams, D.A. (1927), "Water-cement ratio as a basis of concrete quality", J. Proceedings, 23(2), 452-457.
- Ahmed, S., Mafarja, M., Faris, H. and Aljarah, I. (2018), "Feature selection using salp swarm algorithm with chaos", Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, New York, NY, USA, March, pp. 65-69. https://doi.org/10.1145/3206185.3206198
- Akande, K.O., Owolabi, T.O., Twaha, S. and Olatunji, S.O. (2014), "Performance comparison of SVM and ANN in predicting compressive strength of concrete", IOSR J. Comput. Eng., 16(5), 88-94.
- Akin, O. and Sahin, M. (2017), "Active neuro-adaptive vibration suppression of a smart beam", Smart. Struct. Syst., Int. J., 20(6), 657-668. https://doi.org/10.12989/sss.2017.20.6.657
- Aljarah, I., Ala'M, A.Z., Faris, H., Hassonah, M.A., Mirjalili, S. and Saadeh, H (2018), "Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm", Cognitive Computat., 10(3), 478-495. https://doi.org/10.1007/s12559-017-9542-9
- Alsarraf, J., Moayedi, H., Rashid, A.S.A., Muazu, M.A. and Shahsavar, A. (2019), "Application of PSO-ANN modelling for predicting the exergetic performance of a building integrated photovoltaic/thermal system", Eng. Comput, 35, 1-14. https://doi.org/10.1007/s00366-019-00721-4
- Alshihri, M.M., Azmy, A.M. and El-Bisy, M.S. (2009), "Neural networks for predicting compressive strength of structural light weight concrete", Constr. Build. Mater., 23(6), 2214-2219. https://doi.org/10.1016/j.conbuildmat.2008.12.003
- Altun, F., Kisim, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Computat. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert Syst. Applicat., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Behnood, A., Behnood, V., Gharehveran, M.M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201
- Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019a), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w
- Bui, D., Moayedi, H., Gor, M., Jaafari, A. and Foong, L.K. (2019b), "Predicting slope stability failure through machine learning paradigms", ISPRS Int. J. Geo-Inform., 8(9), 395. https://doi.org/10.3390/ijgi8090395
- Bui, D.T., Moayedi, H., Kalantar, B., Osouli, A., Pradhan, B., Nguyen, H. and Rashid, A.S.A. (2019c), "A novel swarm intelligence-Harris hawks optimization for spatial assessment of landslide susceptibility", Sensors, 19(16), 3590. https://doi.org/10.3390/s19163590
- Bui, X.N., Moayedi, H. and Rashid, A.S.A. (2019d), "Developing a predictive method based on optimized M5Rules-GA predicting heating load of an energy-efficient building system", Eng. Comput., 36, 931-940. https://doi.org/10.1007/s00366-019-00739-8
- hahnasir, E.S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424. https://doi.org/10.12989/sss.2018.22.4.413
- Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, I., Panahi, S., Li, S., Jaafari, A. and Ahmad, B.B. (2019), "Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility", Catena, 172, 212-231. https://doi.org/10.1016/j.catena.2018.08.025
- Cheng, M.Y., Prayogo, D. and Wu, Y.W. (2013), "Novel genetic algorithm-based evolutionary support vector machine for optimizing high-performance concrete mixture", J. Comput. Civil Eng., 28(4), 06014003. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000347
- de Almeida Neto, M.A., Fagundes, R.D.A.D.A. and Bastos-Filho, C.J. (2018), "Optimizing support vector regression with swarm intelligence for estimating the concrete compression strength", Proceedings of International Conference on Machine Learning and Data Mining in Pattern Recognition, July, pp. 126-137.
- Eusuff, M.M. and Lansey, K.E. (2003), "Optimization of water distribution network design using the shuffled frog leaping algorithm", J. Water Resour. Plann. Manage., 129(3), 210-225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
- Fallahian, M., Khoshnoudian, F. and Talaei, S. (2018), "Application of couple sparse coding ensemble on structural damage detection", Smart Struct. Syst., Int. J., 21(1), 1-14. https://doi.org/10.12989/sss.2018.21.1.001
- Gao, W., Alsarraf, J., Moayedi, H., Shahsavar, A. and Nguyen, H. (2019), "Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms", Appl. Soft Comput., 105748. https://doi.org/10.1016/j.asoc.2019.105748
- Guo, Z., Moayedi, H., Foong, L.K. and Bahiraei, M. (2020), "Optimal modification of heating, ventilation, and air conditioning system performances in residential buildings using the integration of metaheuristic optimization and neural computing", Energy Build., 214, 109866. https://doi.org/10.1016/j.enbuild.2020.109866
- Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, pp. 65-93.
- Hornik, K (1991), "Approximation capabilities of multilayer feedforward networks", Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
- Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical report-tr06; Erciyes University, Engineering Faculty, Computer ….
- Karaboga, D. and Basturk, B. (2007), "Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems", Proceedings of International Fuzzy Systems Association World Congress, pp. 789-798. https://doi.org/10.1007/978-3-540-72950-1_77
- Karaboga, D., Akay, B. and Ozturk, C. (2007), "Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks", Proceedings of International Conference on Modeling Decisions for Artificial Intelligence, pp. 318-329. https://doi.org/10.1007/978-3-540-73729-2_30
- Keshavarz, Z. and Torkian, H. (2018), "Application of ANN and ANFIS models in determining compressive strength of concrete", Soft Comput. Civil Eng., 2(1), 62-70. https://doi.org/10.22115/SCCE.2018.51114
- Kheder, G.F., Al Gabban, A.M. and Abid, S.M. (2003), "Mathematical model for the prediction of cement compressive strength at the ages of 7 and 28 days within 24 hours", Mater. Struct., 36(10), 693. https://doi.org/10.1007/BF02479504
- Kisi, O. (2007), "Streamflow forecasting using different artificial neural network algorithms", J. Hydrol. Eng., 12(5), 532-539. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(532)
- Liping, Z., Weiwei, W., Yi, H., Yefeng, X. and Yixian, C. (2012), "Application of shuffled frog leaping algorithm to an uncapacitated SLLS problem", AASRI Procedia, 1, 226-231. https://doi.org/10.1016/j.aasri.2012.06.035
- Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H (2019), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of ecofriendly raft-pile foundation (ERP) system", Eng. Comput., 35, 1-13. https://doi.org/10.1007/s00366-019-00767-4
- Mafarja, M., Aljarah, I., Faris, H., Hammouri, A.I., Ala'M, A.Z. and Mirjalili, S. (2019), "Binary grasshopper optimisation algorithm approaches for feature selection problems", Expert Syst. Applicat., 117, 267-286. https://doi.org/10.1016/j.eswa.2018.09.015
- Mandal, S., Shilpa, M. and Rajeshwari, R. (2019), "Compressive Strength Prediction of High-Strength Concrete Using Regression and ANN Models", In: Sustainable Construction and Building Materials, Springer, Singapore, pp. 459-469.
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Mathe. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259
- Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide Susceptibility Using Four Stateof-the-art Metaheuristic Techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723
- Mehta, P.K. (1986), Concrete. Structure, properties and materials, National Academy of Sciences, Washington, DC, USA.
- Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H. and Mirjalili, S.M. (2017), "Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems", Adv. Eng. Software, 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002
- Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H. and Aljarah, I. (2018), "Grasshopper optimization algorithm for multi-objective optimization problems", Appl. Intel., 48(4), 805-820. https://doi.org/10.1007/s10489-017-1019-8
- Moayedi, H. and Hayati, S. (2018a), "Artificial intelligence design charts for predicting friction capacity of driven pile in clay", Neural Comput. Applicat., 31, 1-17. https://doi.org/10.1007/s00521-018-3555-5
- Moayedi, H. and Hayati, S. (2018b), "Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods", Appl. Soft Comput., 66, 208-219. https://doi.org/10.1016/j.asoc.2018.02.027
- Moayedi, H. and Rezaei, A. (2017), "An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand", Neural Comput. Applicat., 31(2), 327-336. https://doi.org/10.1007/s00521-017-2990-z
- Moayedi, H., Mosallanezhad, M. and Nazir, R. (2017), "Evaluation of maintained load test (MLT) and pile driving analyzer (PDA) in measuring bearing capacity of driven reinforced concrete piles", Soil Mech. Found. Eng., 54(3), 150-154. https://doi.org/10.1007/s11204-017-9449-1
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2018), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
- Moayedi, H., Aghel, B., Vaferi, B., Foong, L.K. and Bui, D.T. (2019a), "The feasibility of Levenberg-Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines", J. Petrol. Sci. Eng., 185, 106634. https://doi.org/10.1016/j.petrol.2019.106634
- Moayedi, H., Tien Bui, D., Kalantar, B. and Kok Foong, L. (2019b), "Machine-Learning-Based Classification Approaches toward Recognizing Slope Stability Failure", Appl. Sci., 9(21), 4638. https://doi.org/10.3390/app9214638
- Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019c), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340
- Moayedi, H., Osouli, A., Bui, D.T., Kok Foong, L., Nguyen, H. and Kalantar, B. (2019d), "Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis", Geomat. Natural Hazards Risk, 10(1), 2429-2453. https://doi.org/10.1080/19475705.2019.1699608
- Moayedi, H., Tien Bui, D., Dounis, A. and Ngo, P.T.T. (2019e), "A novel application of league championship optimization (LCA): hybridizing fuzzy logic for soil compression coefficient analysis", Appl. Sci., 10(1), 67. https://doi.org/10.3390/app10010067
- Moayedi, H., Tien Bui, D., Gor, M., Pradhan, B. and Jaafari, A. (2019f), "The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes", ISPRS Int. J. Geo-Inform., 8(9), 391. https://doi.org/10.3390/ijgi8090391
- Moayedi, H., Gor, M., Lyu, Z. and Bui, D.T (2020), "Herding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficient", Measurement, 152, 107389. https://doi.org/10.1016/j.measurement.2019.107389
- Nehdi, M., Djebbar, Y. and Khan, A. (2001), "Neural network model for preformed-foam cellular concrete", ACI Mater. J., 98(5), 402-409.
- Nguyen, H., Bui, X.N., Bui, H.B. and Mai, N.L. (2018), "A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam", Neural Comput. Applicat., 32(8), 3939-3955. https://doi.org/10.1007/s00521-018-3717-5
- Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019a), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782
- Nguyen, H., Moayedi, H., Jusoh, W.A.W. and Sharifi, A. (2019b), "Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system", Eng. Comput., 35, 1-11. https://doi.org/10.1007/s00366-019-00735-y
- Nguyen, T.N., Yu, Y., Li, J., Gowripalan, N. and Sirivivatnanon, V. (2019c), "Elastic modulus of ASR-affected concrete An evaluation using Artificial Neural Network", Comput. Concrete, Int. J., 24(6), 541-553. https://doi.org/10.12989/cac.2019.24.6.541
- Park, K., Kim, S. and Torbol, M. (2016), "Operational modal analysis of reinforced concrete bridges using autoregressive model", Smart. Struct. Syst., Int. J., 17(6), 1017-1030. https://doi.org/10.12989/sss.2016.17.6.1017
- Prayogo, D. (2018), "Metaheuristic-based machine learning system for prediction of compressive strength based on concrete mixture properties and early-age strength test results", Civil Eng. Dimens., 20(1), 21-29. https://doi.org/10.9744/ced.20.1.21-29
- Qiao, W., Moayedi, H. and Foong, L.K. (2020), "Nature-inspired hybrid techniques of IWO, DA, ES, GA, and ICA, validated through a k-fold validation process predicting monthly natural gas consumption", Energy Build., 110023. https://doi.org/10.1016/j.enbuild.2020.110023
- Rebouh, R., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structure", Constr. Build. Mater., 149, 778-789. https://doi.org/10.1016/j.conbuildmat.2017.05.165
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, Int. J., 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355
- Saremi, S., Mirjalili, S. and Lewis, A. (2017), "Grasshopper optimisation algorithm: theory and application", Adv. Eng. Software, 105, 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004
- Sayed, G.I., Khoriba, G. and Haggag, M.H. (2018), "A novel chaotic salp swarm algorithm for global optimization and feature selection", Appl. Intel., 48(10), 3462-3481. https://doi.org/10.1007/s10489-018-1158-6
- Wang, B., Moayedi, H., Nguyen, H., Foong, L.K. and Rashid, A.S.A. (2019), "Feasibility of a novel predictive technique based on artificial neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles", Eng. Comput., 36, 1-10. https://doi.org/10.1007/s00366-019-00764-7
- Xi, W., Li, G., Moayedi, H. and Nguyen, H. (2019), "A particlebased optimization of artificial neural network for earthquakeinduced landslide assessment in Ludian county, China", Geomat. Natural Hazards Risk, 10(1), 1750-1771. https://doi.org/10.1080/19475705.2019.1615005
- Yaseen, Z.M., Deo, R.C., Hilal, A., Abd, A.M., Bueno, L.C., Salcedo-Sanz, S. and Nehdi, M.L. (2018), "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model", Adv. Eng. Software, 115, 112-125. https://doi.org/10.1080/19475705.2019.1615005
- Yeh, I.-C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Compos., 29(6), 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001
- Yu, Y., Li, Y. and Li, J. (2015), "Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm", J. Intel. Mater. Syst. Struct., 26(14), 1789-1798. https://doi.org/10.1177/1045389X15577649
- Yu, Y., Zhang, C., Gu, X. and Cui, Y. (2019), "Expansion prediction of alkali aggregate reactivity-affected concrete structures using a hybrid soft computing method", Neural Comput. Applicat., 31(12), 8641-8660. https://doi.org/10.1007/s00521-018-3679-7
- Zhang, X., Zhang, Y., Shi, Y., Zhao, L. and Zou, C. (2012), "Power control algorithm in cognitive radio system based on modified Shuffled Frog Leaping Algorithm", AEU-Int. J. Electron. Commun., 66(6), 448-454. https://doi.org/10.1016/j.aeue.2011.10.004
- Zhou, G., Moayedi, H., Bahiraei, M. and Lyu, Z. (2020), "Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings", J. Cleaner Product., 254, 120082. https://doi.org/10.1016/j.jclepro.2020.120082
Cited by
- Employing TLBO and SCE for optimal prediction of the compressive strength of concrete vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.753
- Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175
- Predicting the splitting tensile strength of concrete using an equilibrium optimization model vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.081
- Identification and evaluation of cracks in electrostatically actuated resonant gas sensors using Harris Hawk / Nelder Mead and perturbation methods vol.28, pp.1, 2020, https://doi.org/10.12989/sss.2021.28.1.121