DOI QR코드

DOI QR Code

Online structural identification by Teager Energy Operator and blind source separation

  • Ghasemi, Vida (Department of Civil Engineering, Iran University of Science and Technology) ;
  • Amini, Fereidoun (Department of Civil Engineering, Iran University of Science and Technology)
  • Received : 2018.10.20
  • Accepted : 2020.06.28
  • Published : 2020.08.25

Abstract

This paper deals with an application of adaptive blind source separation (BSS) method, equivariant adaptive separation via independence (EASI), and Teager Energy Operator (TEO) for online identification of structural modal parameters. The aim of adaptive BSS methods is recovering a set of independent sources from their unknown linear mixtures in each step when a new sample is received. In the proposed approach, firstly, the EASI method is used to decompose structural responses into independent sources at each instance. Secondly, the TEO based demodulation method with discrete energy separation algorithm (DESA-1) is applied to each independent source, and the instantaneous frequencies and damping ratios are extracted. The DESA-1 method can provide the fast time response and has high resolution so it is suitable for online problems. This paper also compares the performance of DESA-1 algorithm with Hilbert transform (HT) method. Compared to HT method, the DESA-1 method requires smaller amounts of samples to estimate and has a smaller computational complexity and faster adaption due to instantaneous characteristic. Furthermore, due to high resolution of the DESA-1 algorithm, it is very sensitive to noise and outliers. The effectiveness of the proposed approach has been validated using synthetic examples and a benchmark structure.

Keywords

References

  1. Abazarsa, F., Nateghi, F., Ghahari, S.F. and Taciroglu, E. (2016), "Extended blind modal identification technique for nonstationary excitations and its verification and validation", J. Eng. Mech., 142(2), 04015078. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000990
  2. Amini, F. and Ghasemi, V. (2018), "Adaptive modal identification of structures with equivariant adaptive separation via independence approach", J. Sound Vib., 413, 66-78. https://doi.org/10.1016/j.jsv.2017.09.033
  3. Azam, S.E. and Mariani, S. (2018), "Online damage detection in structural systems via dynamic inverse analysis: A recursive Bayesian approach", Eng. Struct., 159, 28-45. https://doi.org/10.1016/j.engstruct.2017.12.031
  4. Azam, S.E., Attari, N.K.A. and Mariani, S. (2017), "Online damage detection via a synergy of proper orthogonal decomposition and recursive Bayesian filters", Nonlinear Dyn., 89(2), 1489-1511. https://doi.org/10.1007/s11071-017-3530-1
  5. Azergui, M., Abenaou, A. and Bouzahir, H. (2018), "A Teager-Kaiser Energy Operator and Wavelet Packet Transform for Bearing Fault Detection", Smart Science, 6(3), 227-233. https://doi.org/10.1080/23080477.2018.1460892
  6. Caicedo, J.M., Dyke, S.J. and Johnson, E.A. (2004), "Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated data", J. Eng. Mech., 130(1), 49-60. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(49)
  7. Cao, M., Radzienski, M., Xu, W. and Ostachowicz, W. (2014), "Identification of multiple damages in beams based on robust curvature mode shapes", Mech. Syst. Signal Process., 46(2), 468-480. https://doi.org/10.1016/j.ymssp.2014.01.004
  8. Cardoso, J.-F. and Laheld, B.H. (1996), "Equivariant adaptive source separation", IEEE Transection Signal Process., 44(2), 3017-3030. https://doi.org/10.1109/78.553476
  9. Chase, J.G., Begoca, V. and Barroso, L. (2005a), "Efficient structural health monitoring for a benchmark structure using adaptive RLS filters", Comput. Struct., 83(8-9), 639-647. https://doi.org/10.1016/j.compstruc.2004.11.005
  10. Chase, J.G, Leo Hwang, K., Barroso, L.R. and Mander, J.B. (2005b), "A simple LMS-based approach to the structural health monitoring benchmark problem", J. Earthq. Eng. Struct. Dyn. (EESD), 34(6), 575-594. https://doi.org/10.1002/eqe.433
  11. Chu, S.-Y. and Lo, S.‐C, (2011), "Application of the on-line recursive least-squares method to perform structural damage assessment", Struct. Control Health Monit., 18(3), 241-264. https://doi.org/10.1002/stc.362
  12. Comon, P. (1989), "Separation of stochastic processes", Proceedings of the Workshop Higher Order Spectral Analaysis, Vail, CO, USA, pp. 174-179. https://doi.org/10.1109/HOSA.1989.735291
  13. Dimitriadis, D. and Maragos, P. (2006), "Continuous energy demodulation methods and application to speech analysis", Speech Commun., 48(7), 819-837. https://doi.org/10.1016/j.specom.2005.08.007
  14. Feldman, M. (2011), "Hilbert transform in vibration analysis", Mech. Syst. Signal Process., 25(3), 735-802. https://doi.org/10.1016/j.ymssp.2010.07.018
  15. Ghahari, S.F., Abazarsa, F. and Taciroglu, E. (2017), "Blind modal identification of non‐classically damped structures under nonstationary excitations", Struct. Control Health Monit., 24(6), e1925. https://doi.org/10.1002/stc.1925
  16. Guo, Y. and Kareem, A. (2016a), "System identification through nonstationary data using time-frequency blind source separation", J. Sound Vib., 371, 110-131. https://doi.org/10.1016/j.jsv.2016.02.011
  17. Guo, Y. and Kareem, A. (2016b), "Non-stationary frequency domain system identification using time-frequency representations", Mech. Syst. Signal Process., 72-73, 712-726. https://doi.org/10.1016/j.ymssp.2015.10.031
  18. Hazra, B., Roffel, A.J., Narasimhan, S. and Pandey, M.D. (2010), "Modified cross-correlation method for the blind identification of structures", J. Eng. Mech., 136(7), 889-897. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000133
  19. James, G.H., Carne, T.G. and Lauffer, J.P. (1993), "The natural excitation technique for modal parameter extraction from operating wind turbines", Int. J. Anal. Experim. Modal Anal., 10(4).
  20. Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2004), "Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data", J. Eng. Mech., 130(1), 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
  21. Jutten, C. and Herault, J. (1991), "Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture", Signal Process., 24(1), 1-10. https://doi.org/10.1016/0165-1684(91)90079-X
  22. Kaiser, J.F. (1990), "On a simple algorithm to calculate the 'energy' of a signal", Proceedings of IEEE ICASSP-90, Albuquerque, NM, USA, April. https://doi.org/10.1109/ICASSP.1990.115702
  23. Kaiser, J. (1993), "Some useful properties of Teager's energy operators", Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN, USA, May. https://doi.org/10.1109/ICASSP.1993.319457
  24. Lagunas Hernandez, M.A. (1994), "A general adaptive algorithm for nongaussian source separation without any constraint", Proceedings of EUSIPCO-94, 7th European Signal Processing Conference, Edinburgh, UK, pp. 1161-1164.
  25. Liang, M. and Bozchalooi, I.S. (2010), "An energy operator approach to joint application of amplitude and frequencydemodulations for bearing fault detection", Mech. Syst. Signal Process., 24(5), 1473-1494. https://doi.org/10.1016/j.ymssp.2009.12.007
  26. Loh, C.H., Weng, J.H., Liu, Y.C., Lin, P.Y. and Huang, S.K. (2011), "Structural damage diagnosis based on on-line recursive stochastic subspace identification", Smart Mater. Struct., 20(5). https://doi.org/10.1002/stc.362
  27. Loh, C.-H., Liu, Y.-C. and Ni, Y.-Q. (2012), "SSA-based stochastic subspace identification of structures from output-only vibration measurements", Smart Struct. Syst., Int. J., 10(4), 331-351. https://doi.org/10.12989/sss.2012.10.4_5.331
  28. Lus, H., Betti, R., Yu, J. and De Angelis, M. (2004), "Investigation of a system identification methodology in the context of the ASCE benchmark problem", J. Eng. Mech., 130(1), 71-84. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(71)
  29. Maragos, P., Kaiser, J. and Quatieri T. (1993), "Energy separation in signal modulations with application to speech analysis", IEEE Transactions on Signal Process., 41(10), 3024-3051. https://doi.org/10.1109/78.277799
  30. McNeill, S.I. and Zimmerman, D.C. (2008), "A framework for blind modal identification using joint approximate diagonalization", Mech. Syst. Signal Process., 22(7), 1526-1548. https://doi.org/10.1016/j.ymssp.2008.01.010
  31. Nagarajaiah, S. and Yang, Y. (2015), "Blind modal identification of output-only non-proportionally-damped structures by timefrequency complex independent component analysis", Smart Struct. Syst., Int. J., 15(1), 81-97. https://doi.org/10.12989/.2015.15.1.081
  32. Poncelet, F., Kerschen, G. and Golinval, J.-C. (2007), "Outputonly modal analysis using blind source separation techniques", Mech. Syst. Signal Process., 21(6), 2335-2358. https://doi.org/10.1016/j.ymssp.2006.12.005
  33. Rageh, A., Azam, S.E. and Linzell, D.G. (2020), "Steel railway bridge fatigue damage detection using numerical models and machine learning: Mitigating influence of modeling uncertainty", Int. J. Fatigue, 134, 105458. https://doi.org/10.1016/j.ijfatigue.2019.105458
  34. Rainieri, C. (2014), "Perspectives of Second-Order Blind Identification for Operational Modal Analysis of Civil Structures", Shock Vib., Article ID 845106, 9 pages. https://doi.org/10.1155/2014/845106
  35. Ramazani, S. and Bahar, O. (2015), "EMD-based outputonly identification of mode shapes of linear structures", Smart Struct. Syst., Int. J., 16(5), 919-935. https://doi.org/10.12989/sss.2015.16.5.919
  36. Sadhu, A., Hazra, B. and Narasimhan, S. (2014), "Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation", Smart Struct. Syst., Int. J., 13(2), 257-280. https://doi.org/10.12989/sss.2014.13.2.257
  37. Sadhu, A., Prakash, G. and Narasimhan, S. (2016), "A hybrid hidden Markov model towards fault detection of rotating components", J. Vib. Control, 23(19), 3175-3195. https://doi.org/10.1177/1077546315627934
  38. Samadi, S., Babaie-Zadeh, M., Jutten, C. and Nayebi, K. (2004), "Blind source separation by adaptive estimation of score function difference", Proceedings of the 5th International Conference on Independent Component Analysis and Blind Signal Separation, Granada, Spain, pp. 22-24. https://doi.org/10.1007/978-3-540-30110-3_2
  39. Santos, A., Figueiredo, E., Silva, M.F.M., Sales, C.S. and Costa, J.C.W.A. (2016), "Machine learning algorithms for damage detection: Kernel-based approaches", J. Sound Vib., 363, 584-599. https://doi.org/10.1016/j.jsv.2015.11.008
  40. Song, M., Astroza, R., Ebrahimian, H., Moaveni, B. and Papadimitriou, C. (2020), "Adaptive Kalman filters for 12nonlinear finite element model updating", Mech. Syst. Signal Process, 143, 106837. https://doi.org/10.1016/j.ymssp.2020.106837
  41. Sorouchyari, E. (1991), "Blind separation of sources, part III: Stability analysis", Signal Process., 24(1), 21-29. https://doi.org/10.1016/0165-1684(91)90081-S
  42. Ulriksen, M.D. and Damkilde, L. (2016), "Structural damage localization by outlier analysis of signal-processed mode shapes - Analytical and experimental validation", Mech. Syst. Signal Process., 68-69, 1-14. https://doi.org/10.1016/j.ymssp.2015.07.021
  43. Ye, J. and Jin, H. (2009), "An optimized EASI algorithm", Signal Process., 89(3), 333-338. https://doi.org/10.1016/j.sigpro.2008.08.015
  44. Zarzoso, V. and Nandi, A.K. (2000), "Adaptive blind source separation for virtually any source probability density function", IEEE Transection Signal Process., 48, 477-488. https://doi.org/10.1109/78.823974