Acknowledgement
The research described in this paper was financially supported by the National Natural Science Foundation of China (51778630, U1934207), Hunan Innovative Provincial Construction Project (2019RS3009).
References
- Ahmari, S., Yang, M.J. and Zhong, H. (2014), "Dynamic interaction between vehicle and bridge deck subjected to support settlement", Eng. Struct., 84, 172-183. http://dx.doi.org/10.1016/j.engstruct.2014.11.018.
- Al Shaer, A., Duhamel, D., Sab, K., Foret, G. and Schmitt, L. (2008), "Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains", J. Sound Vib., 316(1-5), 211-233. https://doi.org/10.1016/j.jsv.2008.02.055.
- Biondi, B., Muscolino, G. and Sofi, A. (2005), "A substructure approach for the dynamic analysis of train-track-bridge system", Comput. Struct., 83(28-30), 2271-2281. https://doi.org/10.1016/j.compstruc.2005.03.036.
- Cai, C.S., Shi, X.M., Voyiadjis, G.Z. and Zhang, Z.J. (2005), "Structural performance of bridge approach slabs under given embankment settlement", J. Bridge Eng., 10(4), 482-489. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:4(482).
- Chen, Z.W., Zhai, W.M. and Tian, G.Y. (2018), "Study on the safe value of multi-pier settlement for simply supported girder bridges in high-speed railways", Struct. Infrastruct. E., 14(3), 400-410. https://doi.org/10.1080/15732479.2017.1359189.
- Chen, Z.W., Zhai, W.M., Cai, C.B. and Sun, Y. (2015), "Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction", Science China Technological Sciences., 58(2), 202-210. https://doi.org/10.1007/s11431-014-5692-0.
- Domenech, A., Museros, P. and Martinez-Rodrigo, M.D. (2014), "Influence of the vehicle model on the prediction of the maximum bending response of simply - supported bridges under high-speed railway traffic", Eng. Struct., 72, 123-139. https://doi.org/10.1016/j.engstruct.2014.04.037.
- Erol, B.A. (2018), "Finite element model calibration of a steel railway bridge via ambient vibration test", Steel Compos. Struct., 3(27), 327-335. https://doi.org/10.12989/scs.2018.27.3.327.
- Gong, X. and Li, Z. (2016), "Bridge pier settlement prediction in high-speed railway via autoregressive model based on robust weighted total least-squares", Surv Rev., 50(359), 147-154. https://doi.org/10.1080/00396265.2016.1236162.
- Gou, H.Y., Ran, Z.W., Yang, L.C., Bao, Y. and Pu, Q.H. (2019), "Mapping vertical bridge deformations to track geometry for high-speed railway", Steel Compos. Struct., 32(4), 467-478. https://doi.org/10.12989/scs.2019.32.4.467.
- Guan, M.S., Liu, W.T., Lai, M.H., Du, H.B., Cui, J. and Gan, Y.Y. (2019), "Seismic behaviour of innovative composite walls with high-strength manufactured sand concrete", Eng. Struct., 195, 182-199. https://doi.org/10.1016/j.engstruct.2019.05.096.
- Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C. and Vinod, J.S. (2014), "Behavior of fresh and fouled railway ballast subjected to direct shear testing: Discrete element simulation", Int. J. Geomech., 14(1), 34-44. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000264.
- Jahangiri, M. and Zakeri, J.A. (2017), "Dynamic analysis of train-bridge system under one-way and two-way high-speed train passing", Struct. Eng., 64, 33-44. https: //doi.org/10.12989/sem.2017.64.1.033.
- Jiang, L.Z., Chai, X.L, Tan, Z.H., Zhou, W.B., Feng, Y.L., Lai, Z.P and Zheng, L. (2019), "Dynamic analyses of a simply supported double-beam system subject to a moving mass with fourier transform technique", Comput. Model. Eng. Sci., 121(1), 291-314.
- Jiang, L.Z., Feng, Y.L, Zhou, W.B. and He, B.B. (2019), "Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system", Steel Compos. Struct., 31(6), 591-600. https://doi.org/10.12989/scs.2019.31.6.591.
- Ju, S.H. (2013), "3D analysis of high-speed trains moving on bridges with foundation settlements", Arch. Appl. Mech., 83(2), 281-291. https://doi.org/10.1007/s00419-012-0653-1.
- Liu, X., Xiang, P., Jiang, L.Z., Lai, Z.P., Zhou, T. and Chen, Y.J. (2019), "Stochastic Analysis of Train-bridge System Using the Karhunen-Loeve Expansion and the Point Estimate Method", Int J Struct Stab Dy.
- Liu, X., Jiang, L.Z., Lai, Z.P., Xiang, P. and Chen, Y.J. (2020), "Sensitivity and dynamic analysis of train-bridge coupled system with multiple random factors", Eng. Struct., 221, 111083. https://doi.org/10.1016/j.engstruct.2020.111083.
- Lee, J.S., Choi, S., Kim, S., Kim, Y.G., Kim, S.W. and Park, C. (2012), "Waveband analysis of track irregularities in high-speed railway from on-board acceleration measurement", J. Solid Mech. Mater. Eng., 6(6), 750-759. https://doi.org/10.1299/jmmp.6.750.
- Niu, F.J., Lin, Z.J., Lu, J.H., Liu, H. and Xu, Z.Y. (2011), "Characteristics of roadbed settlement in embankment-bridge transition section along the Qinghai-Tibet Railway in permafrost regions", Cold Reg Sci Technol, 65(3), 437-445. https://doi.org/10.1016/j.coldregions.2010.10.014.
- Paixao, A., Fortunato, E. and Calcada, R. (2015), "The effect of differential settlements on the dynamic response of the train-track system: A numerical study", Eng. Struct., 88, 216-224. http://dx.doi.org/10.1016/j.engstruct.2015.01.044.
- Rocha, J.M., Henriques, A.A., Calcada, R. and Rönnquist, A. (2015), "Efficient methodology for the probabilistic safety assessment of high-speed railway bridges", Eng. Struct., 101, 138-149.https://doi.org/10.1016/j.engstruct.2015.07.020.
- Shan, D.S., Cui, S.G. and Huang, Z. (2013), "Coupled vibration analysis of vehicle-bridge system based on multi-boby dynamics", J. Transportation Technologies, 03(02), 1-6. http://dx.doi.org/10.4236/jtts.2013.32A001.
- Toydemir, B., Kocak, A., Sevim, B. and Zengin, B. (2017), "Ambient vibration testing and seismic performance of precast I beam bridges on a high-speed railway line", Steel Compos. Struct., 23(5), 557-570. https://doi.org/10.12989/scs.2017.23.5.557.
- Wang, P., Wei, K., Wang, L. and Xiao, J. (2015), "Experimental study of the frequency-domain characteristics of ground vibrations caused by a high-speed train running on non-ballasted track", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4), 1131-1144. https://doi.org/10.1177/0954409715577849.
- Wang, Y.J., Wei, Q.C. and Yau, J.D. (2013), "Interaction response of train loads moving over a two-span continuous beam", Int. J. Struct. Stab. Dy., 13(1), 1350002. https://doi.org/10.1142/S0219455413500028.
- Xia, H., Zhang, N. and Guo, W.W. (2006), "Analysis of resonance mechanism and conditions of train-bridge system", J Sound Vib, 297(3-5), 810-822. https://doi.org/10.1016/j.jsv.2006.04.022.
- Xiong, J.Z., Yu, H.B. and Gao, M.M. (2006), "Effect of pier and abutment non-uniform settlement on train running behavior", Computational Methods In Engineering And Science, Berlin, Heidelberg.
- Yan, W.J., Zhao, M.Y., Sun, Q and Ren, W.X. (2018), "Transmissibility-based system identification for structural health monitoring: fundamentals, approaches, and applications", Mech. Syst. Signal Pr., https://doi.org/10.1016/j.ymassp.2018.06.053.
- Yang, Q., Leng, W.M., Zhang, S., Nie, R.S., Wei, L.M., Zhao, C.Y. and Liu, W.Z. (2014), "Long-term settlement prediction of high-speed railway bridge pile foundation", J. Cent. South Univ, 21(6), 2415-2424. https://doi.org/10.1007/s11771-014-2195-x.
- Yang, Y.B. and Yau, J.D. (2017), "Resonance of high-speed trains moving over a series of simple or continuous beams with non-ballasted tracks", Eng. Struct., 143, 295-305. http://dx.doi.org/10.1016/j.engstruct.2017.04.022.
- Yau, J.D. (2009), "Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations", J. Sound Vib., 325(4-5), 907-922. https://doi.org/10.1016/j.jsv.2009.04.013.
Cited by
- Application of KLE-PEM for Random Dynamic Analysis of Nonlinear Train-Track-Bridge System vol.2020, 2020, https://doi.org/10.1155/2020/8886737