DOI QR코드

DOI QR Code

Ductile crack initiation evaluation in stiffened steel bridge piers under cyclic loading

  • Fujie, Wataru (Department of Civil Engineering, Meijo University) ;
  • Taguchi, Miki (Department of Civil Engineering, Meijo University) ;
  • Kang, Lan (School of Civil Engineering and Transportation, South China University of Technology) ;
  • Ge, Hanbin (Department of Civil Engineering, Meijo University) ;
  • Xu, Bin (College of Civil Engineering, Huaqiao University)
  • 투고 : 2019.04.15
  • 심사 : 2020.07.17
  • 발행 : 2020.08.25

초록

Although detailed shell analysis is suitable to predict the ductile crack initiation life of steel members, such detailed method adds time expense and complexity. In order to simply predict the ductile crack initiation life of stiffened steel bridge piers, a total of 33 cases are simulated to carry out the parametric analyses. In the analysis, the effects of the width-to-thickness ratio, slenderness ratio, plate thickness and so on are considered. Both shell analyses and beam analyses about these 33 cases are conducted. The plastic strain and damage index obtained from shell and beam analyses are compared. The modified factor βs is determined based on the predicted results obtained from both shell and beam analyses in order to simulate the strain concentration at the base corner of the steel bridge piers. Finally, three experimental results are employed to verify the validity of the proposed method in this study.

키워드

과제정보

The study is supported in part by JSPS KAKENHI Grant Number JP18K04333, the Guangdong province Special Support Program "Innovating Science and Technology for Young Top Talents" (2016TQ03Z528), the Natural Science Foundation of Guangdong Province (2020A1515011070), and the Fundamental Research Funds for the Central Universities (D2191360). The financial supports are highly acknowledged.

참고문헌

  1. ABAQUS (2014), ABAQUS/Analysis User's Manual-version 6.14, ABAQUS, Inc.: Pawtucket, Rhode Island.
  2. Ahmad, M.I.M., Arifin, A., Abdullah, S., Jusoh, W.Z.W. and Singh, S.S.K. (2015), "Fatigue crack effect on magnetic flux leakage for A283 grade C steel", Steel Compos. Struct., 19(6), 1549-1560. http://dx.doi.org/10.12989/scs.2015.19.6.1549.
  3. Bellahcene, T. and Aberkane, M. (2017), "Estimation of fracture toughness of cast steel container from Charpy impact test data", Steel Compos. Struct., 25(6), 639-648. https://doi.org/10.12989/scs.2017.25.6.639.
  4. Boissonnade, N., Nseir, J., Lo, M. and Somja, H. (2014), "Design of cellular beams against lateral torsional buckling", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 167(7), 436-444. https://doi.org/10.1680/stbu.12.00049.
  5. Coffin, Jr. L.F. (1954), "A study of the effects of cyclic thermal stresses on a ductile metal", T. Am. Soc. Mech. Engineers, 76 931-950.
  6. Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
  7. Fell, B.V., Kanvinde, A.M., Deierlein, G.G. and Myers, A.T. (2009), "Experimental investigation of inelastic cyclic buckling and fracture of steel braces", J. Struct. Eng. - ASCE, 135(1), 19-32. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:1(19).
  8. Gao, Y., Zhou, Z., Liu, D. and Wang, Y. (2016), "Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment", Steel Compos. Struct., 21(5), 981-997. https://doi.org/10.12989/scs.2016.21.5.981.
  9. Ge, H.B. and Kang, L. (2012), "A damage index-based evaluation method for predicting the ductile crack initiation in steel structures", J. Earthq. Eng., 16(5), 623-643. https://doi.org/10.1080/13632469.2012.676231.
  10. Ge, H.B., Kang, L. and Hayami, K. (2013), "Recent research developments in ductile fracture of steel bridge structures", J. Earthq. Tsunami, 7(3), 1350021. https://doi.org/10.1142/S1793431113500218.
  11. Ge, H.B., Kang, L. and Tsumura, Y. (2012), "Extremely low-cycle fatigue tests of thick-walled steel bridge piers", J. Bridge Eng. - ASCE, 18(9), 858-870. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000429.
  12. Ge, H.B., Kawahito, M. and Ohashi, M. (2007), "Experimental study on ductile crack initiation and its propagation in steel bridge piers of thick-walled box sections", J. Struct. Eng. - JSCE. 53A 493-502.
  13. Ge, H.B. and Luo, X.Q. (2011), "A seismic performance evaluation method for steel structures against local buckling and extra-low cycle fatigue", J. Earthq. Tsunami, 5(2), 83-99. https://doi.org/10.1142/S1793431111001005.
  14. Ge, H.B. and Tsumura, Y. (2009), "Experimental and analytical study on the evaluation of ductile crack initiation in steel bridge piers", J. Struct. Eng. - JSCE, 55A, 605-616.
  15. Jia, L.J., Ge, H. and Suzuki, T. (2014a), "Effect of post weld treatment on cracking behaviors of beam-column connections in steel bridge piers", Steel Compos. Struct., 17(5), 685-702. http://dx.doi.org/10.12989/scs.2014.17.5.685.
  16. Jia, L.J., Ge, H.B., Shinohara, K. and Kato, H. (2016a), "Experimental and numerical study on ductile fracture of structural steels under combined shear and tension", J. Bridge Eng. - ASCE, 21(5), 04016008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000845.
  17. Jia, L.J., Ikai, T., Kang, L., Ge, H. and Kato, T. (2016b), "Ductile cracking simulation procedure for welded joints under monotonic tension", Struct. Eng. Mech., 60(1), 51-69. http://dx.doi.org/10.12989/sem.2016.60.1.051.
  18. Jia, L.J., Koyama, T. and Kuwamura, H. (2014b), "Experimental and numerical study of post-buckling ductile fracture of heat-treated SHS stub columns", J. Struct. Eng. - ASCE, 140(7), 04014044. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001056.
  19. Jia, L.J. and Kuwamura, H. (2013), "Prediction of cyclic behaviors of mild steel at large plastic strain using coupon test results", J. Struct. Eng. - ASCE, 140(2), https://doi.org/10.1061/(ASCE)ST.1943-541X.0000848.
  20. Jia, L.J. and Kuwamura, H. (2014), "Ductile fracture simulation of structural steels under monotonic tension", J. Struct. Eng. - ASCE, 140(5), 04013115. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000944.
  21. Kang, L. and Ge, H. (2012), "Strength and ductility evaluation method for steel bridge pier frames considering effect of shear failure", Adv. Steel Constr., 8(4), 366-382.
  22. Kang, L., Ge, H. and Fang, X. (2016), "An improved ductile fracture model for structural steels considering effect of high stress triaxiality", Constr. Build. Mater., 115, 634-650. https://doi.org/10.1016/j.conbuildmat.2016.04.083.
  23. Kang, L. and Ge, H.B. (2015), "Predicting ductile crack initiation in steel bridge piers with unstiffened box section under specific cyclic loadings using detailed and simplified evaluation methods", Adv. Struct. Eng., 18(9), 1427-1442. https://doi.org/10.1260/1369-4332.18.9.1427.
  24. Kang, L., Ge, H.B. and Kato, T. (2015), "Experimental and ductile fracture model study of single-groove welded joints under monotonic loading", Eng. Struct., 85, 36-51. https://doi.org/10.1016/j.engstruct.2014.12.006.
  25. Kang, L., Suzuki, M., Ge, H. and Wu, B. (2018), "Experiment of ductile fracture performances of HSSS Q690 after a fire", J. Constr. Steel Res., 146, 109-121. https://doi.org/10.1016/j.jcsr.2018.03.010.
  26. Kanvinde, A.M. and Deierlein, G.G. (2008), "Validation of cyclic void growth model for fracture initiation in blunt notch and dogbone steel specimens", J. Struct. Eng. -ASCE, 134(9), 1528-1537. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1528).
  27. Kanvinde, A.M., Fell, B.V., Gomez, I.R. and Roberts, M. (2008), "Predicting fracture in structural fillet welds using traditional and micromechanical fracture models", Eng. Struct., 30(11), 3325-3335. https://doi.org/10.1016/j.engstruct.2008.05.014.
  28. Khandelwal, K. and El-Tawil, S. (2014), "A finite strain continuum damage model for simulating ductile fracture in steels", Eng. Fract. Mech., 116, 172-189. https://doi.org/10.1016/j.engfracmech.2013.12.009.
  29. Kiran, R. and Khandelwal, K. (2014a), "Fast-to-compute weakly coupled ductile fracture model for structural steels", J. Struct. Eng. - ASCE, 140(6), 04014018. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001025.
  30. Kiran, R. and Khandelwal, K. (2014b), "A triaxiality and Lode parameter dependent ductile fracture criterion", Eng. Fract. Mech., 128, 121-138. https://doi.org/10.1016/j.engfracmech.2014.07.010.
  31. Kiran, R. and Khandelwal, K. (2015), "A micromechanical cyclic void growth model for ultra-low cycle fatigue", Int. J. Fatigue, 70, 24-37. https://doi.org/10.1016/j.ijfatigue.2014.08.010.
  32. Kuwamura, H. and Yamamoto, K. (1997), "Ductile crack as trigger of brittle fracture in steel", J. Struct. Eng. -ASCE, 123(6), 729-735. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(729).
  33. Lawson, R.M. and Saverirajan, A.H.A. (2011), "Simplified elasto-plastic analysis of composite beams and cellular beams to Eurocode 4", J. Constr. Steel Res., 67(10), 1426-1434. https://doi.org/10.1016/j.jcsr.2011.03.016
  34. Liu, W.C., Liang, Z. and Lee, G.C. (2005), "Low-cycle bending fatigue of steel bars under random excitation. Part II: Design considerations", J. Struct. Eng. - ASCE, 131(6), 919-923. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(919)
  35. Liu, Y., Kang, L. and Ge, H.B. (2019), "Experimental and numerical study on ductile fracture of structural steels under different stress states", J. Constr. Steel Res., 158, 381-404. https://doi.org/10.1016/j.jcsr.2019.04.001
  36. Luo, X.Q., Ge, H.B. and Ohashi, M. (2012), "Experimental study on ductile crack initiation in compact section steel columns", Steel Compos. Struct., 13(4), 383-396. https://doi.org/10.12989/scs.2012.13.4.383.
  37. Manson, S. (1954), Behaviour of materials under conditions of thermal stress, Lewis Flight Propulsion Laboratory, Cleveland.
  38. Miner, M.A. (1945), "Cumulative damage in fatigue", J. Appl. Mech., 12(3), 159-164. ttps://doi.org/10.1007/978-3-642-99854-6_35.
  39. Nakamura, S., Yasunami, H., Kobayashi, B., Nakagawa, T. and Mizutani, S. (1997), "An experimental study on the seismic performance of steel bridge piers with less-stiffened and compact sized section", Proceedings of nonlinear numerical analysis and seismic design of steel bridge piers, 331-338.
  40. Shen, C., Mamaghani, I.H.P., Mizuno, E. and Usami, T. (1995), "Cyclic behavior of structural steels. II: Theory", J. Eng. Mech. ASCE, 121(11), 1165-1172. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:11(1165).
  41. Tateishi, K., Hanji, T. and Minami, K. (2007), "A prediction model for extremely low cycle fatigue strength of structural steel", Int. J. Fatigue, 29(5), 887-896. https://doi.org/10.1016/j.ijfatigue.2006.08.001.
  42. Usami, T. and Ge, H.B. (1998), "Cyclic behavior of thin-walled steel structures--numerical analysis", Thin-Wall. Struct., 32(1-3), 41-80. https://doi.org/10.1016/S0263-8231(98)00027-5.
  43. Wang, P.J., Wang, X.D., Liu, M. and Zhang, L.L. (2016), "Web-post buckling of fully and partially protected cellular steel beams at elevated temperatures in a fire", Thin-Wall. Struct., 98 29-38. https://doi.org/10.1016/j.tws.2015.02.028.
  44. Yoshizaki, K., Usami, T. and Honma, D. (1999), "Pseudodynamic tests of steel bridge piers with purpose of reducing residual displacements", J. Struct. Eng. - JSCE, 45A, 1017-1026.
  45. Zheng, Y., Usami, T. and Ge, H.B. (2000), "Ductility evaluation procedure for thin-walled steel structures", J. Struct. Eng. -ASCE, 126(11), 1312-1319. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1312).