Acknowledgement
The research described in this paper is financially supported by the Australian Research Council (ARC) under its Discovery Scheme (Project No: DP180100418). The financial support is gratefully acknowledged. The authors acknowledge the University of Sydney HPC service for providing resources that have contributed to the research results in this paper.
References
- ABAQUS (2016), User Manual. Version 6.16, DS SIMULIA Corp, Providence, RI, USA.
- ANSI/AISC 360 (2010), Specification for structural steel buildings, American Institute of Steel Construction; Chicago-Illinois, USA.
- AS 4100 (1998), Steel Structures, the Council of Standards Australia; Sydney, Australia.
- ASCE/SEI 41-17 (2017), Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers; Virginia, USA.
- AS/NZS 1170.1 (2002), Structural design actions Part 1: Permanent, imposed and other actions, the Council of Standards Australia; Sydney, Australia.
- AS/NZS 2327 (2017), Composite structures-Composite steel-concrete construction in buildings, the Council of Standards Australia; Sydney, Australia.
- Cai, Y. and Young, B. (2019), "Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates", Steel Compos. Struct., 30(6), 551-565. https://doi.org/10.12989/scs.2019.30.6.551.
- Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", J. Proceedings, 82(6), 797-804.
- Cassiano1a, D., D'Aniello, M., Rebelo, C., Landolfo, R. and da Silva, L.S. (2016), "Influence of seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479.
- Chen, J., Huang, X., Ma, R. and He, M. (2012), "Experimental study on the progressive collapse resistance of a two-story steel moment frame", J. Perform. Constr. Fac., 26(5), 567-575. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000287.
- Elflah, M., Theofanous, M., Dirar, S. and Yuan, H. (2019), "Behaviour of stainless steel beam-to-column joints-Part 1: Experimental investigation", J. Constr. Steel Res., 152, 183-193. https://doi.org/10.1016/j.jcsr.2018.02.040.
- EN 1993-1-8 (2005), Eurocode 3: Design of steel structures - Part 1-8: Design of joints, European Committee for Standardization; Brussels, Belgium.
- EN 1994-1-1 (2004), Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings, European Committee for Standardization; Brussels, Belgium.
- Faella, C., Martinelli, E. and Nigro, E. (2003), "Shear connection nonlinearity and deflections of steel-concrete composite beams: a simplified method", J. Struct. Eng., 129(1), 12-20. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(12).
- FEMA 356 (2000), Prestandard and commentary for the seismic rehabilitation of buildings, American Society of Civil Engineers; Virginia, USA.
- Gardner, L., Bu, Y., Francis, P., Baddoo, N.R., Cashell, K.A. and McCann, F. (2016), "Elevated temperature material properties of stainless steel reinforcing bar", Constr. Build. Mater., 114, 977-997. https://doi.org/10.1016/j.conbuildmat.2016.04.009.
- GSA (2003), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects, U.S. General Services Administration; Washington, D.C., USA.
- Guo, L., Gao, S. and Fu, F. (2015), "Structural performance of semi-rigid composite frame under column loss", Eng. Struct., 95, 112-126. https://doi.org/10.1016/j.engstruct.2015.03.049.
- Li, G.Q., Li, L.L., Jiang, B. and Lu, Y. (2018), "Experimental study on progressive collapse resistance of steel frames under a sudden column removal scenario", J. Constr. Steel Res., 147, 1-15. https://doi.org/10.1016/j.jcsr.2018.03.023.
- Lichtenfeld, J.A., Van Tyne, C.J. and Mataya, M.C. (2006), "Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel", Metallurgical Mater. T. A, 37(1), 147-161. https://doi.org/10.1007/s11661-006-0160-5.
- Lin, Z., Liu, Y. and He, J. (2014), "Behavior of stud connectors under combined shear and tension loads", Eng. Struct., 81, 362-376. https://doi.org/10.1016/j.engstruct.2014.10.016.
- Liu, M. (2013), "A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse", Eng. Struct., 48, 666-673. https://doi.org/10.1016/j.engstruct.2012.12.011.
- Mashhadi, J. and Saffari, H. (2016), "Effects of damping ratio on dynamic increase factor in progressive collapse", Steel Compos. Struct., 22(3), 677-690. https://doi.org/10.12989/scs.2016.22.3.677.
- McKay, A. (2008), "Alternative path method in progressive collapse analysis: Variation of dynamic and non-linear load increase factors", M.S. Dissertation, The University of Texas, San Antonio.
- McKay, A., Marchand, K. and Diaz, M. (2012), "Alternate path method in progressive collapse analysis: Variation of dynamic and nonlinear load increase factors", Practice Periodical on Structural Design and Construction, 17(4), 152-160. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000126.
- Mirtaheri, M. and Zoghi, M.A. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357.
- Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
- Sadek, F., Main, J.A., Lew, H.S. and Bao, Y. (2011), "Testing and analysis of steel and concrete beam-column assemblies under a column removal scenario", J. Struct. Eng., 137(9), 881-892. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000422.
- Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.
- UFC 4-023-03 (2009), Design of buildings to resist progressive collapse. Unified Facilities Criteria, U.S. Department of Defense; Washington, D.C., USA.
- Wang, J., Uy, B. and Li, D. (2019), "Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended endplates", Steel Compos. Struct., 32(1), 141-156. https://doi.org/10.12989/scs.2019.32.1.141.
- Wang, J., Uy, B., Thai, H.T. and Li, D. (2018a), "Behaviour and design of demountable beam-to-column composite bolted joints with extended end-plates", J. Constr. Steel Res., 144, 221-235. https://doi.org/10.1016/j.jcsr.2018.02.002.
- Wang, J., Zhu, H., Uy, B., Patel, V., Aslani, F. and Li, D. (2018b), "Moment-rotation relationship of hollow-section beam-to-column steel joints with extended end-plates", Steel Compos. Struct., 29(6), 717-734. https://doi.org/10.12989/scs.2018.29.6.717.
- Xu, M., Gao, S., Guo, L., Fu, F. and Zhang, S. (2018), "Study on collapse mechanism of steel frame with CFST-columns under column-removal scenario", J. Constr. Steel Res., 141, 275-286. https://doi.org/10.1016/j.jcsr.2017.11.020.
- Yang, B. and Tan, K.H. (2013), "Experimental tests of different types of bolted steel beam-column joints under a central-column-removal scenario", Eng. Struct., 54, 112-130. https://doi.org/10.1016/j.engstruct.2013.03.037.
- Yang, B., Tan, K.H. and Xiong, G. (2015), "Behaviour of composite beam-column joints under a middle-column-removal scenario: Component-based modelling", J. Constr. Steel Res., 104, 137-154. https://doi.org/10.1016/j.jcsr.2014.10.003.
- Yang, B., Tan, K.H., Xiong, G. and Nie, S.D. (2016), "Experimental study about composite frames under an internal column-removal scenario", J. Constr. Steel Res., 121, 341-351. https://doi.org/10.1016/j.jcsr.2016.03.001.
- Zhu, Y.F., Chen, C.H., Yao, Y., Keer, L.M. and Huang, Y. (2018), "Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames", Steel Compos. Struct., 28(2), 209-221. https://doi.org/10.12989/scs.2018.28.2.209.
Cited by
- Further study on improvement on strain concentration in through-diaphragm connection vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.135
- Hybrid Krill Herd-ANN Model for Prediction Strength and Stiffness of Bolted Connections vol.11, pp.6, 2020, https://doi.org/10.3390/buildings11060229