DOI QR코드

DOI QR Code

Analysis of the machinability of GFRE composites in drilling processes

  • Khashaba, Usama. A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Abd-Elwahed, Mohamed S. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Ahmed, Khaled I. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Najjar, Ismail (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Melaibari, Ammar (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Eltaher, Mohamed A (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2020.05.17
  • 심사 : 2020.07.30
  • 발행 : 2020.08.25

초록

Drilling processes in fiber-reinforced polymer composites are essential for the assembly and fabrication of composite structural parts. The economic impact of rejecting the drilled part is significant considering the associated loss when it reaches the assembly stage. Therefore, this article tends to illustrate the effect of cutting conditions (feed and speed), and laminate thickness on thrust force, torque, and delamination in drilling woven E-glass fiber reinforced epoxy (GFRE) composites. Four feeds (0.025, 0.05, 0.1, and 0.2 mm/r) and three speeds (400, 800, and 1600 RPM) are exploited to drill square specimens of 36.6×36.6 mm, by using CNC machine model "Deckel Maho DMG DMC 1035 V, ecoline". The composite laminates with thicknesses of 2.6 mm, 5.3 mm, and 7.7 mm are constructed respectively from 8, 16, and 24 glass fiber layers with a fiber volume fraction of about 40%. The drilled specimen is scanned using a high-resolution flatbed color scanner, then, the image is analyzed using CorelDraw software to evaluate the delamination factor. Multi-variable regression analysis is performed to present the significant coefficients and contribution of each variable on the thrust force and delamination. Results illustrate that the drilling parameters and laminate thickness have significant effects on thrust force, torque, and delamination factor.

키워드

과제정보

This project was supported by the National Science, Technology, and Innovation Plan (NSTIP) strategic technologies program in the Kingdom of Saudi Arabia under grant number 15-ADV4307-03. The authors also acknowledge, with thanks, the Manufacturing &Production Unit, King Abdulaziz University for their technical support.

참고문헌

  1. Agwa, M.A. and Megahed, A.A. (2019), "New nonlinear regression modeling and multi-objective optimization of cutting parameters in drilling of GFRE composites to minimize delamination", Polym. Test., 75, 192-204. https://doi.org/10.1016/j.polymertesting.2019.02.011.
  2. Achache, H., Benzerdjeb, A., Mehidi, A., Boutabout, B. and Ouinas, D. (2017), "Delamination of a composite laminated under monotonic loading", Struct. Eng. Mech., 63(5), 597-605. https://doi.org/10.12989/sem.2017.63.5.597.
  3. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
  4. Baraheni, M., Tabatabaeian, A., Amini, S. and Ghasemi, A.R. (2019), "Parametric analysis of delamination in GFRP composite profiles by performing rotary ultrasonic drilling approach: experimental and statistical study", Compos. Part B: Eng., 172, 612-620. https://doi.org/10.1016/j.compositesb.2019.05.057.
  5. Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. https://doi.org/10.12989/scs.2019.31.2.113.
  6. Bin Kamisan, M.A.A., Yokota, K., Ueno, T., Kinoshita, H., Homma, S., Yajima, Y. and Takano, N. (2016), "Drilling force and speed for mandibular trabecular bone in oral implant surgery", Biomater. Biomech. Bioeng., 3(1), 15-26. https://doi.org/10.12989/bme.2016.3.1.015.
  7. Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell-experimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445.
  8. Bhat, R., Mohan, N., Sharma, S., Agarwal, R.A., Rathi, A. and Subudhi, K.A. (2019), "Multi-response optimization of the thrust force, torque and surface roughness in the drilling of glass fiber reinforced polyester composite using GRA-RSM", Mater. Today: Proceedings, 19, 333-338. https://doi.org/10.1016/j.matpr.2019.07.608.
  9. Bui, Q.V. (2011), "A modified Benzeggagh-Kenane fracture criterion for mixed-mode delamination", J. Compos. Mater., 45(4), 389-413. https://doi.org/10.1177/0021998310376105.
  10. Chandrasekharan, V., Kapoor, S.G. and DeVor, R.E. (1995), "A mechanistic approach to predicting the cutting forces in drilling: with application to fiber-reinforced composite materials", J. Manufact. Eng. Sci., 117(4), 559-570. https://doi.org/10.1115/1.2803534.
  11. Debnath, K. (2019), "Drilling of composite laminates using a special tool point geometry", In Hole-Making and Drilling Technology for Composites (pp. 63-76). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102397-6.00005-2.
  12. Dehghan, M.S. and Heidary, H. (2020), "Parametric study on drilling of GFRP composite pipe produced by filament winding process in different backup condition", Compos. Struct., 234, 111661. https://doi.org/10.1016/j.compstruct.2019.111661.
  13. Diaz-Alvarez, A., Diaz-Alvarez, J., Santiuste, C. and Miguelez, M. H. (2019), "Experimental and numerical analysis of the influence of drill point angle when drilling biocomposites", Compos. Struct., 209, 700-709. https://doi.org/10.1016/j.compstruct.2018.11.018.
  14. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  15. Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36(2), 143-161. http://dx.doi.org/10.12989/scs.2020.36.2.143.
  16. Fazilati, J. (2018), "Stability of tow-steered curved panels with geometrical defects using higher order FSM", Steel Compos. Struct., 28(1), 25-37. https://doi.org/10.12989/scs.2018.28.1.025.
  17. Feito, N., Munoz-Sanchez, A., Diaz-Alvarez, A. and Miguelez, M. H. (2019), "Multi-objective optimization analysis of cutting parameters when drilling composite materials with special geometry drills", Compos. Struct., 225, 111187. https://doi.org/10.1016/j.compstruct.2019.111187.
  18. Gemi, L., Morkavuk, S., Koklu, U. and Gemi, D.S. (2019b), "An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation", Compos. Part B: Eng., 172, 186-194. https://doi.org/10.1016/j.compositesb.2019.05.023.
  19. Gemi, L., Koklu, U., Yazman, S. and Morkavuk, S. (2020), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests", Compos. Part B: Eng., 186, 107787. https://doi.org/10.1016/j.compositesb.2020.107787.
  20. Gemi, L., Morkavuk, S., Koklu, U. and Yazman, S. (2020), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality", Compos. Struct., 235, 111737. https://doi.org/10.1016/j.compstruct.2019.111737.
  21. Geng, D., Liu, Y., Shao, Z., Lu, Z., Cai, J., Li, X. and Zhang, D. (2019), "Delamination formation, evaluation and suppression during drilling of composite laminates: a review", Compos. Struct., 216, 168-186. https://doi.org/10.1016/j.compstruct.2019.02.099.
  22. Ghosh, A. and Chakravorty, D. (2019), "Application of FEM on first ply failure of composite hyper shells with various edge conditions", Steel Compos. Struct., 32(4), 423-441. https://doi.org/10.12989/scs.2019.32.4.423.
  23. Haeger, A., Schoen, G., Lissek, F., Meinhard, D., Kaufeld, M., Schneider, G. and Knoblauch, V. (2016), "Non-destructive detection of drilling-induced delamination in CFRP and its effect on mechanical properties", Procedia Eng., 149, 130-142. https://doi.org/10.1016/j.proeng.2016.06.647
  24. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  25. Heidary, H. and Mehrpouya, M.A. (2019), "Effect of backup plate in drilling of composite laminates, analytical and experimental approaches", Thin-Wall. Struct., 136, 323-332. https://doi.org/10.1016/j.tws.2018.12.035.
  26. Heidary, H., Mehrpouya, M.A., Saghafi, H. and Minak, G. (2020), "Critical thrust force and feed rate determination in drilling of GFRP laminate with backup plate", Struct. Eng. Mech., 73(6), 631-640. https://doi.org/10.12989/sem.2020.73.6.631.
  27. Hocheng, H., Chen, C.C. and Tsao, C.C. (2018), "Prediction of critical thrust force for tubular composite in drilling-induced delamination by numerical and experimental analysis", Compos. Struct., 203, 566-573. https://doi.org/10.1016/j.compstruct.2018.07.051.
  28. Hrechuk, A., Bushlya, V., M'Saoubi, R. and Stahl, J.E. (2018a), "Experimental investigations into tool wear of drilling CFRP", Procedia Manufact., 25, 294-301. https://doi.org/10.1016/j.promfg.2018.06.086.
  29. Karimi, N.Z., Heidary, H. and Minak, G. (2016), "Critical thrust and feed prediction models in drilling of composite laminates", Compos. Struct., 148, 19-26. https://doi.org/10.1016/j.compstruct.2016.03.059.
  30. Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387.
  31. Khashaba, U.A. (2004), "Delamination in drilling GFR-thermoset composites", Compos. Struct., 63(3-4), 313-327. https://doi.org/10.1016/S0263-8223(03)00180-6.
  32. Khashaba, U.A., Seif, M.A. and Elhamid, M.A. (2007), "Drilling analysis of chopped composites", Compos. Part A: Appl. Sci. Manufact., 38(1), 61-70. https://doi.org/10.1016/j.compositesa.2006.01.020.
  33. Khashaba, U.A. (2013), "Drilling of polymer matrix composites: a review", J. Compos. Mater., 47(15), 1817-1832. https://doi.org/10.1177/0021998312451609.
  34. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I. and Megahed, A.A. (2010), "Machinability analysis in drilling woven GFR/epoxy composites: Part II-Effect of drill wear", Compos. Part A: Appl. Sci. Manufact., 41(9), 1130-1137. https://doi.org/10.1016/j.compositesa.2010.04.011.
  35. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I. and Megahed, A.A. (2013), "Drilling analysis of woven glass fiber-reinforced/epoxy composites", J. Compos. Mater., 47(2), 191-205. https://doi.org/10.1177/0021998312438620.
  36. Khashaba, U.A. and Khdair, A.I. (2017), "Open hole compressive elastic and strength analysis of CFRE composites for aerospace applications", Aerosp. Sci. Technol., 60, 96-107. https://doi.org/10.1016/j.ast.2016.10.026.
  37. Khashaba, U.A. and El-Keran, A.A. (2017), "Drilling analysis of thin woven glass-fiber reinforced epoxy composites", J. Mater. Process. Technol., 249, 415-425. https://doi.org/10.1016/j.jmatprotec.2017.06.011.
  38. Khashaba, U.A. (2020), "Dynamic analysis of scarf adhesive joints in carbon-fiber composites at different temperatures", AIAA J., 1-16. https://doi.org/10.2514/1.J059334.
  39. Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
  40. Khatir, S., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Nguyen, T. N. and Abdel-Wahab, M. (2020), "Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis", Theor. Appl. Fract. Mech., 107, 102554. https://doi.org/10.1016/j.tafmec.2020.102554.
  41. Kilickap, E. (2010), "Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite", Exp. Syst. Appl., 37(8), 6116-6122. https://doi.org/10.1016/j.eswa.2010.02.023.
  42. Krishnaraj, V., Prabukarthi, A., Ramanathan, A., Elanghovan, N., Kumar, M.S., Zitoune, R. and Davim, J.P. (2012), "Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates", Compos. Part B: Eng., 43(4), 1791-1799. https://doi.org/10.1016/j.compositesb.2012.01.007.
  43. Kumar, D., Singh, K.K. and Zitoune, R. (2016), "Experimental investigation of delamination and surface roughness in the drilling of GFRP composite material with different drills", Adv. Manufact. Polym. Compos. Sci., 2(2), 47-56. https://doi.org/10.1080/20550340.2016.1187434
  44. Liu, D., Tang, Y. and Cong, W.L. (2012), "A review of mechanical drilling for composite laminates", Compos. Struct., 94(4), 1265-1279. https://doi.org/10.1016/j.compstruct.2011.11.024.
  45. Mahieddine, A., Ouali, M. and Mazouz, A. (2015), "Modeling and simulation of partially delaminated composite beams", Steel Compos. Struct., 18(5), 1119-1127. https://doi.org/10.12989/scs.2015.18.5.1119.
  46. Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
  47. Mishra, P.K., Pradhan, A.K., Pandit, M.K. and Panda, S.K. (2020), "Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites", Steel Compos. Struct., 35(3), 439. https://doi.org/10.12989/scs.2020.35.3.439.
  48. Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.
  49. Mousavi, S.B. and Yazdi, A.A. (2019), "Aeroelastic behavior of nano-composite beam-plates with double delaminations", Steel Compos. Struct., 33(5), 653-661. https://doi.org/10.12989/scs.2019.33.5.653.
  50. Nguyen, D.H., Bui, T.T., De Roeck, G. and Wahab, M.A. (2019), "Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks", Struct. Eng. Mech., 71(2), 175-183. DOI: http://dx.doi.org/10.12989/sem.2019.71.2.175.
  51. Ojo, S.O., Ismail, S.O., Paggi, M. and Dhakal, H.N. (2017), "A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation", Compos. Part B: Eng., 124, 207-217. https://doi.org/10.1016/j.compositesb.2017.05.039.
  52. Ouagne, P., Ouahbi, T., Park, C.H., Breard, J. and Saouab, A. (2013), "Continuous measurement of fiber reinforcement permeability in the thickness direction: Experimental technique and validation", Compos. Part B: Eng., 45(1), 609-618. https://doi.org/10.1016/j.compositesb.2012.06.007.
  53. Ouakad, H.M., Sedighi, H.M. and Younis, M.I. (2017), "One-to-one and three-to-one internal resonances in MEMS shallow arches", J. Comput. Nonlinear Dynam., 12(5). https://doi.org/10.1115/1.4036815.
  54. Prasad, K.S. and Chaitanya, G. (2019), "Analysis of delamination in drilling of GFRP composites using Taguchi Technique", Mater. Today: Proceedings, 18, 3252-3261. https://doi.org/10.1016/j.matpr.2019.07.201.
  55. Phadnis, V.A., Makhdum, F., Roy, A. and Silberschmidt, V.V. (2013), "Drilling in carbon/epoxy composites: experimental investigations and finite element implementation", Compos. Part A: Appl. Sci. Manufact., 47, 41-51. https://doi.org/10.1016/j.compositesa.2012.11.020.
  56. Rahme, P., Moussa, P., Lachaud, F. and Landon, Y. (2020), "Effect of adding a woven glass ply at the exit of the hole of CFRP laminates on delamination during drilling", https://doi.org/10.1016/j.compositesa.2012.11.020.
  57. Rakesh, P.K., Singh, I. and Kumar, D. (2012), "Drilling of composite laminates with solid and hollow drill point geometries", J. Compos. Mater., 46(25), 3173-3180. https://doi.org/10.1177/0021998312436997.
  58. Sedighi, H.M., Shirazi, K.H., Noghrehabadi, A.R. and Yildirim, A. H.M.E.T. (2012a), "Asymptotic investigation of buckled beam nonlinear vibration", Iran J. Sci. Technol. T. Mech. Eng., 36(2), 107-116.
  59. Sedighi, H.M. and Shirazi, K.H. (2012b), "Bifurcation analysis in hunting dynamical behavior in a railway bogie: Using novel exact equivalent functions for discontinuous nonlinearities", Scientia Iranica, 19(6), 1493-1501. https://doi.org/10.1016/j.scient.2012.10.028.
  60. Sedighi, H.M. and Daneshmand, F. (2014), "Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term", J. Appl. Comput. Mech., 1(1), 1-9. https://doi.org/10.22055/JACM.2014.10545.
  61. Sedighi, H.M., Koochi, A., Daneshmand, F. and Abadyan, M. (2015), "Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and rarefied gas flow", Int. J. Non-linear Mech., 77, 96-106. https://doi.org/10.1016/j.ijnonlinmec.2015.08.002.
  62. Sedighi, H.M. and Bozorgmehri, A. (2016), "Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory", Acta Mechanica, 227(6), 1575-1591. https://doi.org/10.1007/s00707-016-1562-0.
  63. Taheri-Behrooz, F., Aliha, M.R., Maroofi, M. and Hadizadeh, V. (2018), "Residual stresses measurement in the butt joint welded metals using FSW and TIG methods", Steel Compos. Struct., 28(6), 759-766. http://dx.doi.org/10.12989/scs.2018.28.6.759.
  64. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2019), "An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm", Eng. Struct., 199, 109637. https://doi.org/10.1016/j.engstruct.2019.109637.
  65. Tsao, C.C. and Hocheng, H. (2008), "Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network", J. Mater. Process. Technol., 203(1-3), 342-348. https://doi.org/10.1016/j.jmatprotec.2006.04.126.
  66. Wang, D.W. and Yin, C.C. (2009), "Detection of edge delamination in surface adhered active fiber composites", Smart Struct. Syst., 5(6), 633-644. https://doi.org/10.12989/sss.2009.5.6.633.
  67. Xu, Y., Chen, D.M., Zhu, W., Li, G. and Chattopadhyay, A. (2019), "Delamination identification of laminated composite plates using measured mode shapes", Smart Struct. Syst., 23(2), 195-205. https://doi.org/10.12989/sss.2019.23.2.195.
  68. Yun-Lai, Z.H.O.U. and Wahab, M.A. (2017), "Damage detection using vibration data and dynamic transmissibility ensemble with auto-associative neural network", Mechanics, 23(5), 688-695. https://doi.org/10.5755/j01.mech.23.5.15339.
  69. Zemirline, A., Ouali, M. and Mahieddine, A. (2015), "Dynamic behavior of piezoelectric bimorph beams with a delamination zone", Steel Compos. Struct., 19(3), 759-776. https://doi.org/10.12989/scs.2015.19.3.759.

피인용 문헌

  1. Thermo-Mechanical and Delamination Properties in Drilling GFRP Composites by Various Drill Angles vol.13, pp.11, 2020, https://doi.org/10.3390/polym13111884
  2. Heat-Affected Zone and Mechanical Analysis of GFRP Composites with Different Thicknesses in Drilling Processes vol.13, pp.14, 2021, https://doi.org/10.3390/polym13142246