참고문헌
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type material under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
- Cao, R.H., Cao, P., Lin, H., Pu, C.Z. and Ou, K. (2016), "Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: Experimental studies and particle mechanics approach", Rock Mech. Rock Eng., 49, 763-783. https://doi.org/10.1007/s00603-015-0779-x.
- Carter, B.J., Lajtai, E.Z. and Petukhov, A. (2010), "Primary and remote fracture around underground cavities", Int. J. Numer. Anal. Meth. Geomech., 15, 21-40. https://doi.org/10.1002/nag.1610150103.
- Castro-Filgueira, U., Alejano, L.R., Arzúa, J. and Ivars, D.M. (2017), "Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks", Proc. Eng., 191, 488-495. https://doi.org/10.1016/j.proeng.2017.05.208.
- Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 97-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
- Feng, F., Chen, S.J., Li, D.Y., Hu, S.T., Huang, W.P. and Li, B. (2019), "Analysis of fractures of a hard rock specimen via unloading of central hole with different sectional shapes", Energy Sci. Eng., 7(6), 2265-2286. https://doi.org/10.1002/ese3.432.
- Gratchev, I., Dong, H.K. and Chong, K.Y. (2016), "Strength of rock-like specimens with preexisting cracks of different length and width", Rock Mech. Rock. Eng., 49(11), 4491-4496. https://doi.org/10.1007/s00603-016-1013-1.
- Griffith, A.A. (1920), "The phenomenon of rupture and flow in solids", Philos. Trans. A., 221, 163-198.
- Hadi, H., Alireza, K. and Mohammad, F.M. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sin., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.
- Hazzard, J.F., Young, R.P. and Maxwell, S.C. (2000), "Micromechanical modeling of cracking and failure in brittle rocks", J. Geophys. Res. Solid Earth, 105(B7),16683-16697. https://doi.org/10.1029/2000JB900085.
- Hoek, E. and Brown, E.T. (1980), Underground Excavations in Rock, Institute Mining and Metallurgy, CRC Press, London, U.K.
- Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24, 361-364. https://doi.org/10.1115/1.4011547
- Itasca Consulting Group Inc. (2014), PFC (particle flow code), version 5.0, ICG, Minneapolis, Minnesota, U.S.A. http://www.itascacg.com/software/pfc.
- Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract Eng., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x.
- Katcoff, C.Z. and Graham-Brady, L.L. (2014), "Modeling dynamic brittle behavior of materials with circular flaws or pores", Int. J. Solids Struct., 51(3-4), 754-766. https://doi.org/10.1016/j.ijsolstr.2013.11.004.
- Komurlu, E., Kesimal, A. and Demir, S. (2016), "Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus", Geomech. Eng., 10(6), 775-791. https://doi.org/10.12989/gae.2016.10.6.775.
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Lee, J. and Hong, J.W. (2018), "Crack initiation and fragmentation processes in pre-cracked rock-like materials", Geomech. Eng., 15(5), 1047-1059. https://doi.org/10.12989/gae.2018.15.5.1047.
- Lisjak, A. and Grasselli, G. (2014), "A review of discrete modeling techniques for fracturing processes in discontinuous rock mass", J. Rock Mech. Geotech. Eng., 6(4), 301-314. https://doi.org/10.1016/j.jrmge.2013.12.007.
- Maji, A.K. and Shah, S.P. (1989), "Application of acoustic emission and laser holography to study microfracture in concrete", Acids Spec. Publ., 112, 83-110.
- Miao, S.T., Pan, P.Z., Wu, Z.H. and Zhao, S.K. (2018), "Fracture analysis of sandstone with a single filled flaw under uniaxial compression", Eng. Fract. Mech., 204, 19-343. https://doi.org/10.1016/j.engfracmech.2018.10.009.
- Morgan, S.P. and Einstein, H.H. (2017), "Cracking processes affected by bedding planes in Opalinus shale with flaw pairs", Eng. Fract. Mech., 176, 213-234. https://doi.org/10.1016/j.engfracmech.2017.03.003.
- Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta Metall., 34(3), 511-526. https://doi.org/10.1016/0001-6160(86)90087-8.
- Tasdemir, M.A., Maji, A.K. andShah, S.P. (1989), "Crack propagation in concrete under compression", J. Eng. Mech., 116(5), 1058-1076. https://doi.org/10.1061/(asce)0733-9399(1990)116:5(1058).
- Wang, X., Yuan, W., Yan, Y. and Zhang, X. (2020), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 259-268. https://doi.org/10.12989/gae.2020.21.3.259.
- Wen, Z.J., Wang, X. Chen, L.J., Lin, G. and Zhang, H.L. (2017), "Size effect on acoustic emission characteristics of coal-rock damage evolution", Adv. Mater. Sci. Eng., 3472485. https://doi.org/10.1155/2017/3472485
- Wong, R.H. and Lin, P. (2015), "Numerical study of stress distribution and crack coalescence mechanisms of a solid containing multiple holes", Int. J. Rock Mech. Min. Sci., 79, 41-54. https://doi.org/10.1016/j.ijrmms.2015.08.003.
- Wu, M. and Wang, J. (2020), "A DEM investigation on crushing of sand particles containing intrinsic flaws", Soils Found., 60(2), 567-572. https://doi.org/10.1016/j.sandf.2020.03.007.
- Wu, M., Wang, J., Russell, A. and Cheng, Z. (2020), "DEM modelling of mini-triaxial test based on one-to-one mapping of sand particles", Geotechnique, 1-14. https://doi.org/10.1680/jgeot.19.P.212.
- Wu, N., Liang, Z.Z., Zhou, J.R. and Zhang, L.Z. (2020), "Energy evolution characteristics of coal specimens with preformed holes under uniaxial compression", Geomech. Eng., 20(1), 55-66. https://doi.org/10.12989/gae.2020.20.1.055.
- Zaitsev, Y.B. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Struct., 83(14), 357-365. https://doi.org/10.1007/BF02478729.
- Zhao, J.H., Zhang, X.G., Jiang, N., Yin, L.M. and Guo, W.J. (2020), "Porosity zoning characteristics of fault floor under fluid-solid coupling", B. Eng. Geol. Environ., 79(5), 2529-2541. https://doi.org/10.1007/s10064-019-01701-0.
- Zhu, Q.Q., Li, D.Y., Han, Z.Y., Li, X.B and Zhou, Z.L. (2019), "Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression", Int. J. Rock Mech. Min. Sci., 115, 33-47. https://doi.org/10.1016/j.ijrmms.2019.01.010.
피인용 문헌
- Experimental Development Process of a New Cement and Gypsum-Cemented Similar Material considering the Effect of Moisture vol.2020, 2020, https://doi.org/10.1155/2020/8831801
- Effect of Multiple Hole Distribution and Shape Based on Particle Flow on Rocklike Failure Characteristics and Mechanical Behavior vol.2020, 2020, https://doi.org/10.1155/2020/8822225
- Failure characteristics and mechanical mechanism of study on red sandstone with combined defects vol.24, pp.2, 2021, https://doi.org/10.12989/gae.2021.24.2.179