References
- Abbireddy, C.O.R. and Clayton, C.R.I. (2015), "The impact of particle form on the packing and shear behaviour of some granular materials: an experimental study", Granul. Matter, 17(4), 427-438. https://doi.org/10.1007/s10035-015-0566-0.
- Abu-Farsakh, M., Dhakal, S. and Chen, Q. (2015), "Laboratory characterization of cementitiously treated/stabilized very weak subgrade soil under cyclic loading", Soils Found., 55(3), 504-516. https://doi.org/10.1016/j.sandf.2015.04.003.
- Andrews, D.C.A. and Martin, G.R. (2000), "Criteria for liquefaction of silty soils", Proceedings of the 12th World Conference on Earthquake Engineering, Upper Hutt, New Zealand, January-February.
- ASTM (2017), D6913/D6913M-17: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM (2019), D2216-19: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 371. https://doi.org/10.1007/s12517-016-2366-1.
- Blanck, G., Cuisinier, O. and Masrouri, F. (2014), "Soil treatment with organic non-traditional additives for the improvement of earthworks", Acta Geotech., 9(6), 1111-1122. https://doi.org/10.1007/s11440-013- 0251-6.
- Bouazza, A., Gates, W.P. and Ranjith, P.G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
- Boulanger, R.W. and Idriss, I.M. (2006), "Liquefaction susceptibility criteria for silts and clays", J. Geotech. Geoenviron. Eng., 132(11), 1413-1426. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413).
- Brinker, C.J., Hurd, A.J., Schunk, P.R., Frye, G.C. and Ashley, C.S. (1992), "Review of sol-gel thin film formation", J. Non-Crystal. Solids, 147, 424-436. https://doi.org/10.1016/S0022- 3093(05)80653-2.
- BSI (1990), BS 1377: Methods of Test for Soils for Civil Engineering Purposes, British Standards Institute, Milton Keynes, U.K.
- Cabalar, A.F. and Clayton, C.R.I. (2010). "Some observations of the effects of pore fluids on the triaxial behaviour of a sand", Granul. Matter, 12(1), 87-95. https://doi.org/10.1007/s10035-009-0164-0.
- Cabalar, A.F. and Demir, S. (2019), "Fall-cone testing of unsaturated sand-clay mixtures", P. I. Civil Eng Geotec., 172(5), 432-441. https://doi.org/10.1680/jgeen.18.00155.
- Cabalar, A.F. and Mustafa, W.S. (2015), "Fall cone tests on clay-sand mixtures", Eng. Geol., 192, 154-165. https://doi.org/10.1016/j.enggeo.2015.04.009.
- Cabalar, A.F., Awraheem, M.H. and Khalaf, M.M. (2018), "Geotechnical properties of a low-plasticity clay with biopolymer", J. Mater. Civil Eng., 30(8), 04018170. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0002380.
- Cabalar, A.F., Demir, S. and Muklif, M. (2021), "Liquefaction resistance of different size/shape sand-clay mixtures using a pair of bender element mounted mould", J. Test Eval., 49(1). https://doi.org/10.1520/JTE20180677.
- Cabalar, A.F., Dulundu, K. and Tuncay, K. (2013), "Strength of various sands in triaxial and cyclic direct shear tests", Eng. Geol., 156, 92-102. https://doi.org/10.1016/j.enggeo.2013.01.011.
- Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1.
- Cavarretta, I., Coop, M. and O'Sullivan, C. (2010), "The influence of particle characteristics on the behaviour of coarse grained soils", Geotechnique, 60(6), 413-423. https://doi.org/10.1680/geot.2010.60.6.413.
- Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. http://doi.org/10.12989/gae.2014.7.6.633.
- Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
- Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transp. Geotech., 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
- Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Envir., 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.
- Farias, M.M. and Llano-Serna, M.A. (2016), "Simple methodology to obtain critical state parameters of remolded clays under normally consolidated conditions using the fall-cone test", Geotech. Test. J., 39(5), 1-10, https://doi.org/10.1520/GTJ20150207.
- Fatehi, H., Abtahi, S.M., Hashemolhosseini, H. and Hejazi, S.M. (2018), "A novel study on using protein based biopolymers in soil strengthening", Constr. Build. Mater., 167, 813-821. https://doi.org/10.1016/j.conbuildmat.2018.02.028.
- Feng, T.W. (2000), "Fall-cone penetration and water content relationship of clays", Geotechnique, 50(2), 181-187. https://doi.org/10.1680/geot.2000.50.2.181.
- Feng, T.W. (2004), "Using a small ring and a fall-cone to determine the plastic limit", J. Geotech. Geoenviron. Eng., 130(6), 630-635. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(630).
- Feng, T.W. (2001), "A linear log d log w model for the determination of consistency limits of soils", Can. Geotech. J., 38(6), 1335-1342. https://doi.org/10.1139/t01-061.
- Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
- Gong, J., Nie, Z., Zhu, Y., Liang, Z. and Wang, X. (2019), "Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM", Comput. Geotech., 106, 161-176. https://doi.org/10.1016/j.compgeo.2018.10.021.
- Grillet, A.M., Wyatt, N.B. and Gloe, L.M. (2012), "Polymer gel rheology and adhesion", Rheology, 3, 59-80.
- Haigh, S.K., Vardanega, P.J. and Bolton, M.D. (2013), "The plastic limit of clays", Geotechnique, 63(6), 435. http://doi.org/10.1680/geot.11.P.123.
- Hansbo, S. (1957), "A new approach to the determination of the shear strength of clay by the fall-cone test", Royal Swedish Geotech. Inst. Proc., 14, 1-49.
- Jonsson, M. and Sellin, C. (2012), "Correction of shear strength in cohesive soil: A comparison focused on vane tests in west Sweden", M.Sc. Dissertation, Chalmers University of Technology, Gothenburg, Sweden.
- Koumoto, T. and Houlsby, G.T. (2001), "Theory and practice of the fall cone test", Geotechnique, 51(8), 701-712. https://doi.org/10.1680/geot.2001.51.8.701.
-
Kumara, S.A. and Sujatha, E.R. (2020), "Performance evaluation of
${\beta}$ -glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement", Geomech. Eng., 21(5), 413-422. https://doi.org/10.12989/gae.2020.21.5.413. - Kwon, Y.M., Chang, I., Lee, M. and Cho, G.Y. (2019), "Geotechnical engineering behavior of biopolymer- treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.445.
- Lade, P.V. and Yamamuro, J.A. (1997), "Effects of nonplastic fines on static liquefaction of sands", Can. Geotech. J., 34(6), 918-928. https://doi.org/10.1139/t97-052.
- Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z., Tahir, M.M. and Mohamad, E.T. (2016), "Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer", J. Mater. Civil Eng., 29(2), 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
- Leroueil, S. and Le Bihan, J.P. (1996), "Liquid limits and fall cones", Can. Geotech. J., 33(5), 793-798. https://doi.org/10.1139/t96-104-324.
- Li, M., Chai, S., Du, H. and Wang, C. (2016), "Effect of chlorine salt on the physical and mechanical properties of inshore saline soil treated with lime", Soils Found., 56(3), 327-335. https://doi.org/10.1016/j.sandf.2016.04.001.
- Likos, W.J. and Jaafar, R. (2014), "Laboratory fall cone testing of unsaturated sand", J. Geotech. Geoenviron. Eng., 140(8), 04014043. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001143.
- Mitchell, J.K. (1981), "Soil improvement: State of art report", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June.
- Mitchell, J.K. and Santamarina, J.C. (2005), "Biological considerations in geotechnical engineering", J. Geotech. Geoenviron. Eng., 131(10), 1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
- Muszynski, M.R. and Vitton, S.J. (2012), "Particle shape estimates of uniform sands: Visual and automated methods comparison", J. Mater. Civil Eng., 24(2), 194-206. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0000351.
- O'Kelly, B.C. (2014), "Characterisation and undrained strength of amorphous clay", P. I. Civil Eng Geotec., 167(3), 311-320. http://doi.org/10.1680/geng.11.00025.
- O'Kelly, B.C. (2018), "Fall-cone strength testing of municipal sludges and residues", Environ. Geotech., 5(1), 18-30. https://doi.org/10.1680/jenge.15.00080.
- Olson, R.E. and Mesri, G. (1970), "Mechanisms controlling compressibility of clays", J. Soil Mech. Found. Div., 96(SM6), 1863-1878. https://doi.org/10.1061/JSFEAQ.0001475
- Pan, Y.Z., Rossabi, J., Pan, C.G. and Xie, X.Y. (2019), "Stabilization/solidification characteristics of organic clay contaminated by lead when using cement", J. Hazard. Mater., 362, 132-139. https://doi.org/10.1016/j.jhazmat.2018.09.010.
- Pardo, G.S., Orense, R.P. and Sarmah, A.K. (2018), "Cyclic strength of sand mixed with biochar: Some preliminary results", Soils Found., 58(1), 241-247. https://doi.org/10.1016/j.sandf.2017.11.004.
- Park, T.W., Kim, H.J., Tanvir, M.T., Lee, J.B. and Moon, S.G. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/gae.2018.14.1.099.
- Rafalko, S.D., Filz, G.M., Brandon, T.L. and Mitchell, J.K. (2007), "Rapid chemical stabilization of soft clay soils", Transp. Res. Rec., 2026(1), 39-46. https://doi.org/10.3141/2026-05.
- Rosalam, S. and England, R. (2006), "Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp", Enzyme Microb. Technol., 39(2), 197-207. https://doi.org/10.1016/j.enzmictec.2005.10.019.
- Saadeldin, R. and Siddiqua, S. (2013), "Geotechnical characterization of clay-cement mix", B. Eng. Geol. Environ., 72(3), 601-608. https://doi.org/10.1007/s10064-013-0531-2.
- Schaefer, V.R., Mitchell, J.K., Berg, R.R., Filz G.M. and Douglas S.C. (2012), "Ground improvement in the 21st century: a comprehensive web-based information system", Proceedings of the GeoCongress 2012, Oakland, California, U.S.A., March.
- Seed, H.B., Idriss, I.M. and Arango, I. (1983), "Evaluation of liquefaction potential using field performance data", J. Geotech. Eng., 109(3), 458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
- Shrestha, R. and Al-Tabbaa, A. (2012), "Development of predictive models for cement stabilized soils", Proceedings of the 4th International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, U.S.A., February.
- Sivakumar, V., Glynn, D., Cairns, P. and Black, J.A. (2009), "A new method of measuring plastic limit of fine materials", Geotechnique, 59(10), 813-823. https://doi.org/10.1680/geot.2009.59.10.813.
- Sridharan, A. and Nagaraj, H.B. (1999), "Absorption water content and liquid limit of soils", Geotech. Test. J., 22(2), 127-133. https://doi.org/10.1520/GTJ11271J.
- Stone, K. and Kyambadde, B.S. (2007), "Determination of strength and index properties of fine-grained soils using a soil minipenetrometer", J. Geotech. Geoenviron. Eng., 133(6), 667-673. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(667).
- Suh, H.S., Kim, K.Y., Lee, J. and Yun, T.S. (2017), "Quantification of bulk form and angularity of particle with correlation of shear strength and packing density in sands", Eng. Geol., 220, 256-265. https://doi.org/10.1016/j.enggeo.2017.02.015.
- Terashi, M. and Juran, I. (2000), "Ground improvement-state of the art", Proceedings of the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, November.
- Terzaghi, K. (1925), Erdbaumechanik auf Bodenphysikalischer Grundlage, Deuticke, Leipzig, Vienna, Austria.
- Thomas, A., Tripathia, R.K. and Yadu, L.K. (2019), "Alkali-activated GGBS and enzyme on the swelling properties of sulfate bearing soil", Geomech. Eng., 19(1), 21-28. https://doi.org/10.12989/gae.2019.19.1.021.
- Toyota, H. and Takada, S. (2019), "Effects of gravel content on liquefaction resistance and its assessment considering deformation characteristics in gravel-mixed sand", Can. Geotech. J., 56(12), 1743-1755. https://doi.org/10.1139/cgj-2018-0575.
- Wadell, H. (1932), "Volume, shape, and roundness of rock particles", J. Geol., 40(5), 443-451. https://doi.org/10.1086/623964.
- Wasti, Y. and Bezirci, M.H. (1986), "Determination of the consistency limits of soils by the fall cone test", Can. Geotech. J., 23(2), 241-246. https://doi.org/10.1139/t86-033.
- Wood, D.M. (1985), "Some fall cone tests", Geotechnique, 35(1), 64-68. https://doi.org/10.1680/geot.1985.35.1.64.
- Wroth, C.P. and Wood, D.M. (1978), "The correlation of index properties with some basic engineering properties of soils", Can. Geotech. J., 15(2), 137-145. https://doi.org/10.1139/t78-014.
- Zhang, T., Cai, G. and Liu, S. (2018), "Reclaimed lignin-stabilized silty soil: undrained shear strength, atterberg limits, and microstructure characteristics", J. Mater. Civil Eng., 30(11), 04018277. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002492.
- Zhou, W.H., Jing, X.Y., Yin, Z.Y. and Geng, X. (2019), "Effects of particle sphericity and initial fabric on the shearing behavior of soil-rough structural interface", Acta Geotech., 14(6), 1699-1716. https://doi.org/10.1007/s11440-19-00781-2.