DOI QR코드

DOI QR Code

Fall-cone testing of different size/shape sands treated with a biopolymer

  • Received : 2019.04.24
  • Accepted : 2020.08.02
  • Published : 2020.09.10

Abstract

This paper presents a study on the undrained shear strength (su) of various sands treated with a biopolymer by employing an extensive series of laboratory fall-cone penetration values covered a range of about 15 mm to 25 mm. In the tests, two sizes (0.15 mm-0.30 mm, and 1.0 mm-2.0 mm) and shapes (rounded, angular) of sand grains, Xanthan gum (XG), and distilled water were used. The XG biopolymer in 0.0%, 1.0%, 2.0%, and 3.0% by dry weight were mixed separately with four different sands, and water. The tests results obtained at the same water content revealed an increase in the su values at different levels with an increase in the XG content. Treating the sands with the XG biopolymer addition was concluded to have a greater efficacy on finer and more angular grains than coarser and more rounded grains in the samples. Overall, the present study indicates that different amount of the XG biopolymer has an important potential to be utilized for increasing the su values of samples with various size/shape of sand grains and water content.

Keywords

References

  1. Abbireddy, C.O.R. and Clayton, C.R.I. (2015), "The impact of particle form on the packing and shear behaviour of some granular materials: an experimental study", Granul. Matter, 17(4), 427-438. https://doi.org/10.1007/s10035-015-0566-0.
  2. Abu-Farsakh, M., Dhakal, S. and Chen, Q. (2015), "Laboratory characterization of cementitiously treated/stabilized very weak subgrade soil under cyclic loading", Soils Found., 55(3), 504-516. https://doi.org/10.1016/j.sandf.2015.04.003.
  3. Andrews, D.C.A. and Martin, G.R. (2000), "Criteria for liquefaction of silty soils", Proceedings of the 12th World Conference on Earthquake Engineering, Upper Hutt, New Zealand, January-February.
  4. ASTM (2017), D6913/D6913M-17: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  5. ASTM (2019), D2216-19: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  6. Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 371. https://doi.org/10.1007/s12517-016-2366-1.
  7. Blanck, G., Cuisinier, O. and Masrouri, F. (2014), "Soil treatment with organic non-traditional additives for the improvement of earthworks", Acta Geotech., 9(6), 1111-1122. https://doi.org/10.1007/s11440-013- 0251-6.
  8. Bouazza, A., Gates, W.P. and Ranjith, P.G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
  9. Boulanger, R.W. and Idriss, I.M. (2006), "Liquefaction susceptibility criteria for silts and clays", J. Geotech. Geoenviron. Eng., 132(11), 1413-1426. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413).
  10. Brinker, C.J., Hurd, A.J., Schunk, P.R., Frye, G.C. and Ashley, C.S. (1992), "Review of sol-gel thin film formation", J. Non-Crystal. Solids, 147, 424-436. https://doi.org/10.1016/S0022- 3093(05)80653-2.
  11. BSI (1990), BS 1377: Methods of Test for Soils for Civil Engineering Purposes, British Standards Institute, Milton Keynes, U.K.
  12. Cabalar, A.F. and Clayton, C.R.I. (2010). "Some observations of the effects of pore fluids on the triaxial behaviour of a sand", Granul. Matter, 12(1), 87-95. https://doi.org/10.1007/s10035-009-0164-0.
  13. Cabalar, A.F. and Demir, S. (2019), "Fall-cone testing of unsaturated sand-clay mixtures", P. I. Civil Eng Geotec., 172(5), 432-441. https://doi.org/10.1680/jgeen.18.00155.
  14. Cabalar, A.F. and Mustafa, W.S. (2015), "Fall cone tests on clay-sand mixtures", Eng. Geol., 192, 154-165. https://doi.org/10.1016/j.enggeo.2015.04.009.
  15. Cabalar, A.F., Awraheem, M.H. and Khalaf, M.M. (2018), "Geotechnical properties of a low-plasticity clay with biopolymer", J. Mater. Civil Eng., 30(8), 04018170. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0002380.
  16. Cabalar, A.F., Demir, S. and Muklif, M. (2021), "Liquefaction resistance of different size/shape sand-clay mixtures using a pair of bender element mounted mould", J. Test Eval., 49(1). https://doi.org/10.1520/JTE20180677.
  17. Cabalar, A.F., Dulundu, K. and Tuncay, K. (2013), "Strength of various sands in triaxial and cyclic direct shear tests", Eng. Geol., 156, 92-102. https://doi.org/10.1016/j.enggeo.2013.01.011.
  18. Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1.
  19. Cavarretta, I., Coop, M. and O'Sullivan, C. (2010), "The influence of particle characteristics on the behaviour of coarse grained soils", Geotechnique, 60(6), 413-423. https://doi.org/10.1680/geot.2010.60.6.413.
  20. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. http://doi.org/10.12989/gae.2014.7.6.633.
  21. Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
  22. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  23. Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transp. Geotech., 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
  24. Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Envir., 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.
  25. Farias, M.M. and Llano-Serna, M.A. (2016), "Simple methodology to obtain critical state parameters of remolded clays under normally consolidated conditions using the fall-cone test", Geotech. Test. J., 39(5), 1-10, https://doi.org/10.1520/GTJ20150207.
  26. Fatehi, H., Abtahi, S.M., Hashemolhosseini, H. and Hejazi, S.M. (2018), "A novel study on using protein based biopolymers in soil strengthening", Constr. Build. Mater., 167, 813-821. https://doi.org/10.1016/j.conbuildmat.2018.02.028.
  27. Feng, T.W. (2000), "Fall-cone penetration and water content relationship of clays", Geotechnique, 50(2), 181-187. https://doi.org/10.1680/geot.2000.50.2.181.
  28. Feng, T.W. (2004), "Using a small ring and a fall-cone to determine the plastic limit", J. Geotech. Geoenviron. Eng., 130(6), 630-635. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(630).
  29. Feng, T.W. (2001), "A linear log d log w model for the determination of consistency limits of soils", Can. Geotech. J., 38(6), 1335-1342. https://doi.org/10.1139/t01-061.
  30. Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
  31. Gong, J., Nie, Z., Zhu, Y., Liang, Z. and Wang, X. (2019), "Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM", Comput. Geotech., 106, 161-176. https://doi.org/10.1016/j.compgeo.2018.10.021.
  32. Grillet, A.M., Wyatt, N.B. and Gloe, L.M. (2012), "Polymer gel rheology and adhesion", Rheology, 3, 59-80.
  33. Haigh, S.K., Vardanega, P.J. and Bolton, M.D. (2013), "The plastic limit of clays", Geotechnique, 63(6), 435. http://doi.org/10.1680/geot.11.P.123.
  34. Hansbo, S. (1957), "A new approach to the determination of the shear strength of clay by the fall-cone test", Royal Swedish Geotech. Inst. Proc., 14, 1-49.
  35. Jonsson, M. and Sellin, C. (2012), "Correction of shear strength in cohesive soil: A comparison focused on vane tests in west Sweden", M.Sc. Dissertation, Chalmers University of Technology, Gothenburg, Sweden.
  36. Koumoto, T. and Houlsby, G.T. (2001), "Theory and practice of the fall cone test", Geotechnique, 51(8), 701-712. https://doi.org/10.1680/geot.2001.51.8.701.
  37. Kumara, S.A. and Sujatha, E.R. (2020), "Performance evaluation of ${\beta}$-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement", Geomech. Eng., 21(5), 413-422. https://doi.org/10.12989/gae.2020.21.5.413.
  38. Kwon, Y.M., Chang, I., Lee, M. and Cho, G.Y. (2019), "Geotechnical engineering behavior of biopolymer- treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.445.
  39. Lade, P.V. and Yamamuro, J.A. (1997), "Effects of nonplastic fines on static liquefaction of sands", Can. Geotech. J., 34(6), 918-928. https://doi.org/10.1139/t97-052.
  40. Latifi, N., Horpibulsuk, S., Meehan, C.L., Abd Majid, M.Z., Tahir, M.M. and Mohamad, E.T. (2016), "Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer", J. Mater. Civil Eng., 29(2), 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
  41. Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  42. Leroueil, S. and Le Bihan, J.P. (1996), "Liquid limits and fall cones", Can. Geotech. J., 33(5), 793-798. https://doi.org/10.1139/t96-104-324.
  43. Li, M., Chai, S., Du, H. and Wang, C. (2016), "Effect of chlorine salt on the physical and mechanical properties of inshore saline soil treated with lime", Soils Found., 56(3), 327-335. https://doi.org/10.1016/j.sandf.2016.04.001.
  44. Likos, W.J. and Jaafar, R. (2014), "Laboratory fall cone testing of unsaturated sand", J. Geotech. Geoenviron. Eng., 140(8), 04014043. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001143.
  45. Mitchell, J.K. (1981), "Soil improvement: State of art report", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June.
  46. Mitchell, J.K. and Santamarina, J.C. (2005), "Biological considerations in geotechnical engineering", J. Geotech. Geoenviron. Eng., 131(10), 1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
  47. Muszynski, M.R. and Vitton, S.J. (2012), "Particle shape estimates of uniform sands: Visual and automated methods comparison", J. Mater. Civil Eng., 24(2), 194-206. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0000351.
  48. O'Kelly, B.C. (2014), "Characterisation and undrained strength of amorphous clay", P. I. Civil Eng Geotec., 167(3), 311-320. http://doi.org/10.1680/geng.11.00025.
  49. O'Kelly, B.C. (2018), "Fall-cone strength testing of municipal sludges and residues", Environ. Geotech., 5(1), 18-30. https://doi.org/10.1680/jenge.15.00080.
  50. Olson, R.E. and Mesri, G. (1970), "Mechanisms controlling compressibility of clays", J. Soil Mech. Found. Div., 96(SM6), 1863-1878. https://doi.org/10.1061/JSFEAQ.0001475
  51. Pan, Y.Z., Rossabi, J., Pan, C.G. and Xie, X.Y. (2019), "Stabilization/solidification characteristics of organic clay contaminated by lead when using cement", J. Hazard. Mater., 362, 132-139. https://doi.org/10.1016/j.jhazmat.2018.09.010.
  52. Pardo, G.S., Orense, R.P. and Sarmah, A.K. (2018), "Cyclic strength of sand mixed with biochar: Some preliminary results", Soils Found., 58(1), 241-247. https://doi.org/10.1016/j.sandf.2017.11.004.
  53. Park, T.W., Kim, H.J., Tanvir, M.T., Lee, J.B. and Moon, S.G. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/gae.2018.14.1.099.
  54. Rafalko, S.D., Filz, G.M., Brandon, T.L. and Mitchell, J.K. (2007), "Rapid chemical stabilization of soft clay soils", Transp. Res. Rec., 2026(1), 39-46. https://doi.org/10.3141/2026-05.
  55. Rosalam, S. and England, R. (2006), "Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp", Enzyme Microb. Technol., 39(2), 197-207. https://doi.org/10.1016/j.enzmictec.2005.10.019.
  56. Saadeldin, R. and Siddiqua, S. (2013), "Geotechnical characterization of clay-cement mix", B. Eng. Geol. Environ., 72(3), 601-608. https://doi.org/10.1007/s10064-013-0531-2.
  57. Schaefer, V.R., Mitchell, J.K., Berg, R.R., Filz G.M. and Douglas S.C. (2012), "Ground improvement in the 21st century: a comprehensive web-based information system", Proceedings of the GeoCongress 2012, Oakland, California, U.S.A., March.
  58. Seed, H.B., Idriss, I.M. and Arango, I. (1983), "Evaluation of liquefaction potential using field performance data", J. Geotech. Eng., 109(3), 458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
  59. Shrestha, R. and Al-Tabbaa, A. (2012), "Development of predictive models for cement stabilized soils", Proceedings of the 4th International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, U.S.A., February.
  60. Sivakumar, V., Glynn, D., Cairns, P. and Black, J.A. (2009), "A new method of measuring plastic limit of fine materials", Geotechnique, 59(10), 813-823. https://doi.org/10.1680/geot.2009.59.10.813.
  61. Sridharan, A. and Nagaraj, H.B. (1999), "Absorption water content and liquid limit of soils", Geotech. Test. J., 22(2), 127-133. https://doi.org/10.1520/GTJ11271J.
  62. Stone, K. and Kyambadde, B.S. (2007), "Determination of strength and index properties of fine-grained soils using a soil minipenetrometer", J. Geotech. Geoenviron. Eng., 133(6), 667-673. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(667).
  63. Suh, H.S., Kim, K.Y., Lee, J. and Yun, T.S. (2017), "Quantification of bulk form and angularity of particle with correlation of shear strength and packing density in sands", Eng. Geol., 220, 256-265. https://doi.org/10.1016/j.enggeo.2017.02.015.
  64. Terashi, M. and Juran, I. (2000), "Ground improvement-state of the art", Proceedings of the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, November.
  65. Terzaghi, K. (1925), Erdbaumechanik auf Bodenphysikalischer Grundlage, Deuticke, Leipzig, Vienna, Austria.
  66. Thomas, A., Tripathia, R.K. and Yadu, L.K. (2019), "Alkali-activated GGBS and enzyme on the swelling properties of sulfate bearing soil", Geomech. Eng., 19(1), 21-28. https://doi.org/10.12989/gae.2019.19.1.021.
  67. Toyota, H. and Takada, S. (2019), "Effects of gravel content on liquefaction resistance and its assessment considering deformation characteristics in gravel-mixed sand", Can. Geotech. J., 56(12), 1743-1755. https://doi.org/10.1139/cgj-2018-0575.
  68. Wadell, H. (1932), "Volume, shape, and roundness of rock particles", J. Geol., 40(5), 443-451. https://doi.org/10.1086/623964.
  69. Wasti, Y. and Bezirci, M.H. (1986), "Determination of the consistency limits of soils by the fall cone test", Can. Geotech. J., 23(2), 241-246. https://doi.org/10.1139/t86-033.
  70. Wood, D.M. (1985), "Some fall cone tests", Geotechnique, 35(1), 64-68. https://doi.org/10.1680/geot.1985.35.1.64.
  71. Wroth, C.P. and Wood, D.M. (1978), "The correlation of index properties with some basic engineering properties of soils", Can. Geotech. J., 15(2), 137-145. https://doi.org/10.1139/t78-014.
  72. Zhang, T., Cai, G. and Liu, S. (2018), "Reclaimed lignin-stabilized silty soil: undrained shear strength, atterberg limits, and microstructure characteristics", J. Mater. Civil Eng., 30(11), 04018277. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002492.
  73. Zhou, W.H., Jing, X.Y., Yin, Z.Y. and Geng, X. (2019), "Effects of particle sphericity and initial fabric on the shearing behavior of soil-rough structural interface", Acta Geotech., 14(6), 1699-1716. https://doi.org/10.1007/s11440-19-00781-2.