References
- Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
- Addou, F.Y., Meradjah, M., Bousahla, A.A, Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019.
- Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. http://doi.org/10.12989/acd.2018.3.3.289.
- Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
- Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
- Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.
- Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409.
- Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
- Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
- Bishop, R.E.D. (1969), The Mechanics of Vibration, Cambridge University Press, Cambridge, U.K.
- Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of - different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
- Brischetto, S., Tornabene, F., Fantuzzi, N. and Viola, E. (2016), "3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders", Meccanica, 51(9), 2059-2098. https://doi.org/10.1007/s11012-016-0361-y.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
- Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, S.R. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
- Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218(6), 2772-2784. https://doi.org/10.1016/j.amc.2011.08.020.
- Dewangan, H.C., Sharma, N., Hirwani, C.H. and Panda, S.K. (2020), "Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure", Mech. Based Des. Struct. Machines, 1-18. https://doi.org/10.1080/15397734.2020.1759432.
- Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
- Grover, N., Maiti, D.K. and Singh, B.N. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.
- Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., 9(3), 361-372. https://doi.org/10.12989/gae.2015.9.3.361.
- Han, S.C., Park, W.T. and Jung, W.Y. (2016), "3D graphical dynamic responses of FGM plates on Pasternak elastic foundation based on quasi-3D shear and normal deformation theory", Compos. Part B Eng., 95, 324-334. https://doi.org/10.1016/j.compositesb.2016.04.018.
- Hasani Baferani, A., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
- He, X.Q., Ng, T.Y., Sivashanker, S. and Liew, K.M. (2001), "Active control of FGM plates with integrated piezoelectric sensors and actuators", Int. J. Solids Struct., 38(9), 1641-1655. https://doi.org/10.1016/S0020-7683(00)00050-0.
- Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Dynamic and stability analysis of functionally graded material sandwich plates in hygro-thermal environment using a simple higher shear deformation theory", J. Sandw. Struct. Mater., 1099636219845841. https://doi.org/10.1177/1099636219845841.
- Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-019-00757-6.
- Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017a), "Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure", J. Aerosp. Eng., 30(5), 04017045. https://doi.org/10.1061/(asce)as.1943-5525.0000756.
- Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017b), "Nonlinear transient finite-element analysis of delaminated composite shallow shell panels", AIAA J., 55(5), 1734-1748. https://doi.org/10.2514/1.j055624.
- Hirwani, C.K., Mahapatra, T.R., Panda, S.K., Sahoo, S.S., Singh, V.K. and Patle, B.K. (2017c), "Nonlinear free vibration analysis of laminated carbon/epoxy curved panels", Defence Sci. J., 67, 207-218. https://doi.org/10.14429/DSJ.67.10072.
- Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Modell., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
- Huang, Z.Y., Lü, C.F. and Chen, W.Q. (2008), "Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85(2), 95-104. https://doi.org/10.1016/j.compstruct.2007.10.010.
- Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Modell., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
- Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411.
- Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
- Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R, (2019), "Cut out effect on nonlinear post-buckling behavior of FGCNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
- Jha, D.K., Kant, T., Srinivas, K. and Singh, R.K. (2013), "An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates", Fusion Eng. Des., 88(12), 3199-3204. https://doi.org/10.1016/j.fusengdes.2013.10.002.
- Jin, G., Su, Z., Shi, S., Ye, T. and Gao, S. (2014), "Threedimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions", Compos. Struct., 108, 565-577. https://doi.org/10.1016/j.compstruct.2013.09.051.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037
- Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
- Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0
- Katariya, P.V., Mehar, K. and Panda, S.K. (2020), "Nonlinear dynamic responses of layered skew sandwich composite structure and experimental validation", Int. J. Non-Lin. Mech., 125, 103527. https://doi.org/10.1016/j.ijnonlinmec.2020.103527.
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Prediction of nonlinear eigenfrequency of laminated curved sandwich structure using higher-order equivalent singlelayer theory", J. Sandw. Struct. Mater., 21(8), 2846-2869. https://doi.org/10.1177/1099636217728420.
- Katariya, P. and Panda, S. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202.
- Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
- Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Forced axial vibration of a single-walled carbon nanotube embedded in elastic medium under various moving forces", J. Nano Res., 63, 112-133. https://doi.org/10.4028/www.scientific.net/jnanor.63.112.
- Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random vibration of the functionally graded laminates in thermal environments", Comput. Meth. Appl. Mech. Eng., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Kumar, R., Patil, H.S. and Lal, A. (2011), "Hygrothermoelastic free vibration response of laminated composite plates resting on elastic foundations with random system properties", J. Thermoplast. Compos., 26(5), 573-604. https://doi.org/10.1177%2F0892705711425851. https://doi.org/10.1177/0892705711425851
- Lee, W.H., Han, S.C. and Park, W.T. (2015), "A refined higher order shear and normal deformation theory for E-, P-, and SFGM plates on Pasternak elastic foundation", Compos. Struct., 122, 330-342. https://doi.org/10.1016/j.compstruct.2014.11.047.
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
- Lin, Z. and Shi, S. (2018), "Three-dimensional free vibration of thick plates with general end conditions and resting on elastic foundations", J. Low Freq. Noise V. A., 38(1), 110-121. https://doi.org/10.1177%2F1461348418815052.
- Majeed, W.I. and Sadiq, I.A. (2018), "Buckling and pre stressed vibration analysis of laminated plates using new shear deformation", IOP Conf. Ser. Mater. Sci. Eng., 454, 012006. https://doi.org/10.1088/1757-899X/454/1/012006.
- Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations", Compos. Struct., 89(3), 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007.
- Mantari, J.L. (2015), "Free vibration of advanced composite plates resting on elastic foundations based on refined nonpolynomial theory", Meccanica, 50(9), 2369-2390. https://doi.org/10.1007/s11012-015-0160-x.
- Mantari, J.L. and Granados, E.V. (2016), "An original FSDT to study advanced composites on elastic foundation", Thin-Wall. Struct., 107, 80-89. https://doi.org/10.1016/j.tws.2016.05.02.
- Mantari, J.L., Granados, E.V. and Guedes Soares, C. (2014), "Vibrational analysis of advanced composite plates resting on elastic foundation", Compos. Part B Eng., 66 407-419. https://doi.org/10.1016/j.compositesb.2014.05.026.
- Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Adda Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetricS-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Mehar, K., Mishra, P.K. and Panda, S.K. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org 10.1080/15376494.2020.1725193.
- Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367. https://doi.org/10.12989/scs.2020.36.3.355.
- Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. http://doi.org/10.12989/acd.2018.3.2.113.
- Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
- Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511.
- Nguyen, V.H., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. Part B Eng., 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012.
- Panda, S.K. and Kolahchi, R. (2018), "Dynamic analysis in three layered conical shells utilising numerical methods", Int. J. Hydromechatron., 1(4), 427-446. https://doi.org/10.1504/IJHM.2018.097292.
- Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Eur. J. Mech. A Solids, 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
- Park, J.S. and Kim, J.H. (2006), "Thermal postbuckling and vibration analyses of functionally graded plates", J. Sound Vib., 289(1-2), 77-93. https://doi.org/10.1016/j.jsv.2005.01.031.
- Park, M. and Choi, D.H. (2017), "A simplified first-order shear deformation theory for bending, buckling and free vibration analyses of isotropic plates on elastic foundations", KSCE J. Civ. Eng., 22(4), 1235-1249. https://doi.org/10.1007/s12205-017-1517-6.
- Pasternak, P. (1954), "On a new method of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstuve i Arkhitekture.
- Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
- Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2). 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. http://doi.org/10.12989/gae.2020.22.1.065.
- Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1‐3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3C663::AIDNME787%3E3.0.CO;2-8.
- Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
- Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
- Sahla, F., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663
- Sahoo, S.S., Panda, S.K. and Mahapatra, T.R. (2016a), "Static, free vibration and transient response of laminated composite curved shallow panel - An experimental approach", Eur. J. Mech. A Solids, 59, 95-113. https://doi.org/10.1016/j.euromechsol.2016.03.014.
- Sahoo, S.S., Panda, S.K. and Sen, D. (2016b), "Effect of delamination on static and dynamic behavior of laminated composite plate", AIAA J., 54(8), 2530-2544. https://doi.org/10.2514/1.j054908.
- Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (glass/carbon/kevlar) curved panel structure", Compos. Struct., 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
- Said, A., Ameur, M., Bousahla, A.A. and Tounsi, A. (2014), "A new simple hyperbolic shear deformation theory for functionally graded plates resting on Winkler-Pasternak elastic foundations", Int. J. Comput. Meth., 11(6), 1350098. https://doi.org/10.1142/S0219876213500989.
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
- Sayyad, A.S. and Ghugal, Y.M. (2018), "Effect of thickness stretching on the static deformations, natural frequencies, and critical buckling loads of laminated composite and sandwich beams", J. Brazil. Soc. Mech. Sci. Eng., 40(6), 296. https://doi.org/10.1007/s40430-018-1222-5.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundations", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
- Shen, H.S. and Wang, Z.X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018.
- Singh, V.K., Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mehar, K. (2018), "Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration", P. I. Mech. Eng. C J. Mech., 233(5), 1601-1619. https://doi.org/10.1177/0954406218774362.
- Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020.
- Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", Int. J. Appl. Mech., 7(6). https://doi.org/10.1142/S1758825115500829.
- Thai, H.T. and Choi, D.H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
- Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.
- Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
- Tran, L.V. and Kim, S.E. (2018), "Static and free vibration analyses of multilayered plates by a higher-order shear and normal deformation theory and isogeometric analysis", Thin-Wall. Struct., 130, 622-640. https://doi.org/10.1016/j.tws.2018.06.013.
- Winkler, E. (1867), Die Lehre von der Elasticitaet und Festigkeit, Dominicus, Prague, Czech Republic.
- Xiang, S., Kang, G.W. and Liu, Y.Q. (2014), "A nth-order shear deformation theory for natural frequency of the functionally graded plates on elastic foundations", Compos. Struct., 111, 224-231. https://doi.org/10.1016/j.compstruct.2014.01.004.
- Yaghoobi, H., Fereidoon, A., Nouri, M.K. and Mareishi, S. (2015), "Thermal buckling analysis of piezoelectric functionally graded plates with temperature-dependent properties", Mech. Adv. Mater. Struct., 22(10), 864-875. https://doi.org/10.1080/15376494.2013.864436.
- Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
- Zhang, H., Shi, D., Zha, S. and Wang, Q. (2018), "Soundvibration behaviors of the thin orthotropic rectangular fluidstructure coupled system resting on varying elastic Winkler and Pasternak foundations", Results Phys., 11, 188-200. https://doi.org/10.1016/j.rinp.2018.09.002.
- Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "Computation of vibration solution for functionally graded carbon nanotubereinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method", Appl. Math. Comput., 256, 488-504. https://doi.org/10.1016/j.amc.2015.01.066.
- Zhou, D., Cheung, Y., Lo, S. and Au, F. (2004), "Threedimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Meth. Eng., 59(10), 1313-1334. https://doi.org/10.1002/nme.915.
- Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. http://doi.org/10.12989/cac.2020.26.1.063.
Cited by
- Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
- Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.081
- The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.015
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095
- Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2020, https://doi.org/10.1007/s00419-021-01973-7