참고문헌
- ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, ACI 318R-14, Farmington Hills, MI, USA.
- Belarbi, A. and Hsu, T.T.C. (1991), "Constitutive Laws of Concrete in Biaxial Tension-Compression", Research Report UHCEE 91-2; Department of Civil and Environmental Engineering, University of Houston, Houston, Texas, 1-155.
- Belarbi, A. and Hsu, T.T.C. (1994), "Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete", ACI Struct. J., 91(4), 465-474. http://doi.org/10.14359/4154.
- Belarbi, A. and Hsu, T.T.C. (1995), "Constitutive Laws of Softened Concrete in Biaxial Tension-Compression", ACI Struct. J., 92(5), 562-573. http://doi.org/10.14359/907.
- Belletti, B., Cerioni, R. and Iori, I. (2001), "Physical Approach for Reinforced-Concrete (PARC) Membrane Elements", J. Struct. Eng., 127(12), 1412-1426. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1412).
- Belletti, B., Scolari, M. and Vecchi, F. (2017), "PARC_CL 2.0 Crack Model for NLFEA of Reinforced Concrete Structures under Cyclic Loadings", Comput. Struct., 191(1), 165-179. https://doi.org/10.1016/j.compstruc.2017.06.008.
- Bentz, E.C. and Collins, M.P. (2006), "Development of the 2004 Canadian Standards Association (CSA) A23.3 Shear Provisions for Reinforced Concrete", Canadian J. Civil Eng., 33(5), 521-534. http://doi.org/10.1139/L06-005.
- Bentz, E.C., Vecchio, F.J. and Collins, M.P. (2006), "Simplified Modified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Elements", ACI Struct. J., 103(4), 614-624. http://doi.org/10.14359/16438.
- Bishara, A. and Peir, J.C. (1968), "Reinforced Concrete Rectangular Columns in Torsion", J. Struct. Divison ASCE, 94(ST12), 2913-2933. https://doi.org/10.1061/JSDEAG.0002147
- Bredt, R. (1896), "Kritische Bemerkungen zur Drehungselastizitat. Z Vereines Deutscher Ingenieure", Band, 40(28), 785-790.
- Cerioni, R., Bernardi, P., Michelini, E. and Mordini, A. (2011), "A general 3D Approach for the Analysis of Multi-Axial Fracture Behavior of Reinforced Concrete Elements", Eng. Fracture Mech., 78(8), 1784-1793. https://doi.org/10.1016/j.engfracmech.2011.01.020.
- Chakraborty, M. (1977), "Torsional-Balanced Steel in Concrete Beams", J. ASCE Struct. Division, 103(ST11), 2181-2191. https://doi.org/10.1061/JSDEAG.0004765
- Chalioris, C.E. (2006), "Experimental Study of the Torsion of Reinforced Concrete Beams", Struct. Eng. Mech., 23(6), 713-737. https://doi.org/10.12989/sem.2006.23.6.713.
- Chen, W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York, USA.
- Chiu, H.J., Fang, I.K., Young, W.T. and Shiau, J.K. (2007), "Behavior of Reinforced Concrete Beams with Minimum Torsional Reinforcement", Eng. Struct., 29(9), 2193-2205. https://doi.org/10.1016/j.engstruct.2006.11.004.
- Collins, M.P. and Mitchell, D. (1991), Prestressed Concrete Structures, Prentice-Hall, New Jersey, USA.
- CSA (1994), Design of concrete structures. A23.3-94, Canadian Standards Association, Etobicoke, Ontario, Canada.
- CSA (2004), Design of Concrete Structures, A23.3-04, Canadian Standards Association, Mississauga, Ontario, Canada.
- Elfgren, L., Karlsson, I. and Losberg, A. (1974), "Torsion-Bending-Shear Interaction for Concrete Beams", J. Struct. Divison ASCE, 100(ST8), 1657-1676. https://doi.org/10.1061/JSDEAG.0003843
- Fang, I.K. and Shiau, J.K. (2004), "Torsional Behavior of Normal- and High-Strength Concrete Beams", ACI Struct. J., 101(3), 304-313. http://doi.org/10.14359/13090.
- Goodno, B.J. and Gere, J.M. (2017), Mechanics of Materials, Cengage Learning, MA, USA.
- Greene, G.G. and Belarbi, A. (2009), "Model for Reinforced Concrete Members under Torsion, Bending, and Shear. I: Theory", J. Eng. Mech. ASCE, 135(9), 961-969. http://doi.org/10.1061/(ASCE)0733-9399(2009)135:9(961).
- Hwang, J.H., Lee, D.H., Ju, H., Kim, K.S., Kang, T.H.K. and Pan, Z.F. (2016), "Shear Deformation of Steel Fiber-Reinforced Prestressed Concrete Beams", J. Concrete Struct. Mater., 10(3), S53-S63. http://doi.org/10.1007/s40069-016-0159-2.
- Hsu TTC (1968), "Torsion of Structural Concrete-Behavior of Reinforced Concrete Rectangular Members", Torsion of Structural Concrete. American Concrete Institute, Farmington Hills, Detroit, USA, ACI Publications SP-18, 261-306. http://doi.org/10.14359/17572.
- Hsu, T.T.C. (1984), Torsion of Reinforced Concrete, Van Nostrand Reinhold, New York, USA.
- Hsu, T.T.C. (1990), "Shear Flow Zone in Torsion of Reinforced Concrete", J. Struct. Eng., 116(11), 3206-3226. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3206)
- Hsu, T.T.C. (1998), "Stresses and Crack Angles in Concrete Membrane Elements", J. Struct. Eng. ASCE, 124(12), 1476-1484. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1476).
- Hsu, T.T.C. and Mo, Y.L. (1985), "Softening of concrete in torsional members-Theory and Tests", ACI J., 82(3), 290-303. http://doi.org/10.14359/10335.
- Hsu, T.T.C. and Mo, Y.L. (1985), "Softening of concrete in torsional members-Design Recommendations", ACI J., 82(4), 443-451. http://doi.org/10.14359/10355.
- Hsu, T.T.C. and Mo, Y.L. (2010), Unified Theory of Concrete Structures, Wiley and Sons, New York, USA.
- Hsu, T.T.C. and Zhang, L.X. (1996), "Tension Stiffening in Reinforced Concrete Membrane Element", ACI Struct. J., 93(1), 108-115. http://doi.org/10.14359/9681.
- Hsu, T.T.C. and Zhang, L.X. (1997), "Nonlinear analysis of membrane elements by fixed-angle softened-truss model", ACI Struct. J., 94(5), 483-492. http://doi.org/10.14359/498.
- Hsu, T.T.C. and Zhu, R.R.H. (2002), "Softened Membrane Model for Reinforced Concrete Elements in Shear", ACI Struct. J., 99(4), 460-469. http://doi.org/10.14359/12115.
- Jeng, C.H. (2015), "Unified Softened Membrane Model for Torsion in Hollow and Solid Reinforced Concrete Members: Modeling Precracking and Postcracking Behavior", J. Struct. Eng. ASCE, 141(10), 1-20. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001212.
- Jeng, C.H. and Hsu, T.T.C. (2009), "A Softened Membrane Model for Torsion in Reinforced Concrete Members", Eng. Struct., 32(9), 1944-1954. https://doi.org/10.1016/j.engstruct.2009.02.038.
- Ju, H., Kim, K.S., Lee, D.H., Hwang, J.H., Choi, S.H. and Oh, Y.H. (2015), "Torsional Responses of Steel Fiber-Reinforced Concrete Members", Compos. Struct., 129(1), 143-156. https://doi.org/10.1016/j.compstruct.2015.04.003.
- Ju, H., Lee, D.H. and Kim, K.S. (2019), "Minimum Torsional Reinforcement Ratio for Reinforced Concrete Members with Steel Fibers", Compos. Struct., 207(1), 460-470. https://doi.org/10.1016/j.compstruct.2018.09.068.
- Ju, H., Lee, D., Kim, J.R. and Kim, K.S. (2020), "Maximum Torsional Reinforcement Ratio of Reinforced Concrete Beams", Structures, 23(1), 481-493. https://doi.org/10.1016/j.istruc.2019.09.007.
- Ju, H., Lee, D.H., Hwang, J.H., Kim, K.S. and Oh, Y.H. (2013), "Fixed-Angle Smeared-Truss Approach with Direct Tension Force Transfer Model for Torsional Behavior of Steel Fiber-Reinforced Concrete Members", J. Adv. Concrete Technol., 11(9), 215-229. http://doi.org/10.3151/jact.11.215.
- Koutchoukali, N.E. and Belarbi, A. (2001), "Torsion of High-Strength Reinforced Concrete Beams and Minimum Reinforcement Requirement", ACI Struct. J., 98(4), 462-469. http://doi.org/10.14359/10289.
- Lee, J.Y. and Kim, S.W. (2010), "Torsional Strength of RC Beams Considering Tension Stiffening Effect", J. Struct. Eng. ASCE, 136(11), 1367-1378. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000237.
- Lee, D.H., Han, S.J. and Kim, K.S. (2016), "Dual Potential Capacity Model for Reinforced Concrete Beams Subjected to Shear", Struct. Concrete, 17(3), 1443-456. http://doi.org/10.1002/suco.201500165.
- Lessig, N.N. (1959), "Determination of the Load Carrying Capacity of Reinforced Concrete Elements with Rectangular Cross-Section Subjected to Flexure with Torsion", Institute Betona I Zhelezobetona, Moscow, Work 5, 4-28.
- Lu, J.K. and Wu, W.H. (2001), "Application of Softened Truss Model with Plastic Approach to Reinforced Concrete Beams in Torsion", Struct. Eng. Mech., 11(4), 393-406. https://doi.org/10.12989/sem.2001.11.4.393.
- McMullen, A.E. and El-Degwy, W.M. (1985), "Prestressed Concrete Tests Compared with Torsion Theories", PCI J., 30(5), 96-127. http://doi.org/10.15554/pcij.09011985.96.127.
- McMullen, A.E. and Rangan, B.V. (1978), "Pure Torsion in Rectangular Sections-A Re-Examination", ACI J., 75(10), 511-519. http://doi.org/10.14359/10963.
- Mitchell, D. and Collins, M.P. (1974), "Diagonal compression field theory-A rational model for structural concrete in pure torsion", ACI J., 71(8), 396-408. http://doi.org/10.14359/7103.
- Muttoni, A. and Fernandez, R.M. (2008), "Shear Strength of Members without Transverse Reinforcement as a Function of the Critical Shear Crack Width", ACI Struct. J., 105(2), 163-172. http://doi.org/10.14359/19731.
- Pang, X.B. and Hsu, T.T.C. (1996), "Fixed-angle softened-truss model for reinforced concrete", ACI Struct. J., 93(2), 197-207. http://doi.org/10.14359/1452.
- Rahal, K.N. (1993), "Behavior of Reinforced Concrete Beams Subjected to Combined Shear and Torsion", Ph.D. Dissertation, University of Toronto, Ontario, Canada.
- Rahal, K.N. (2001), "Analysis and Design for Torsion in Reinforced and Prestressed Concrete Beams", Struct. Eng. Mech., 11(6), 575-590. https://doi.org/10.12989/sem.2001.11.6.575.
- Rahal, K.N. (2006), "Evaluation of AASHTO-LRFD General Procedure for Torsion and Combined Loading", ACI Struct. J., 103(5), 683-692. http://doi.org/10.14359/16920.
- Rahal, K.N. and Collins, M.P. (1995), "Analysis of Sections Subjected to Combined Shear and Torsion-A Theoretical Model", ACI Struct. J., 92(4), 459-469. http://doi.org/10.14359/995.
- Rahal, K.N. and Collins, M.P. (1996), "Simple Model for Predicting Torsional Strength of Reinforced and Prestressed Concrete Sections", ACI Struct. J., 93(6), 658-666. http:/doi.org/10.14359/512.
- Rahal, K.N. and Collins, M.P. (1999), "Background to the General Method of Shear Design in the 1994 CSA-A23.3 Standard", Canadian J. Civil Eng., 26(6), 827-839. http://doi.org/10.1139/l99-050.
- Sherwood, E.G., Bentz, E.C. and Collins, M.P. (2007), "Effect of Aggregate Size on Beam-Shear Strength of Thick Slabs", ACI Struct. J., 104(2), 180-191. http://doi.org/10.14359/18530.
- Stevens, N.J., Uzumeri, S.M., Collins, M.P. and Will, G.T. (1991), "Constitutive Model for Reinforced Concrete Finite Element Analysis", ACI Struct. J., 88(1), 49-59. http://doi.org/10.14359/3105.
- Taylor, H.P.J. (1970), "Investigating of Forces Carried across Cracks in Reinforced Concrete Beams in Shear by Interlock of Aggregate", TRA 42.447; Cement and Concrete Association, London, United Kingdom. 1-22.
- Tsampras, G., Sause, R., Zhang, D., Fleischman, R., Restrepo, J., Mar, D. and Maffei, J. (2016), "Development of Deformable Connection for Earthquake-Resistant Buildings to Reduce Floor Accelerations and Force Responses", Earthq. Eng Struct. Dynam., 45(9), 1473-1494. http://doi.org/10.1002/eqe.2718.
- Vas Rodrigues, R.V., Muttoni, A. and Fernandez, R.M. (2010), "Influence of Shear on Rotation Capacity of Reinforced Concrete Members without Shear Reinforcement", ACI Struct. J., 107(5), 516-525. http://doi.org/10.14359/51663902.
- Vecchio, F.J. (2000), "Disturbed Stress Field Model for Reinforced Concrete: Formulation", J. Struct. Eng. ASCE, 126(9), 1070-1077. http://doi.org/10.1061/(asce)0733-9445(2000)126:9(1070).
- Vecchio, F.J. and Collins, M.P. (1982), "The Response of Reinforced Concrete to In-Plane Shear and Normal Stresses", Department of Civil Engineering, University of Toronto, Ontario, Canada, Publication 82-03, 1-332.
- Vecchio, F.J. and Collins, M.P. (1986), "The Modified Compression Field Theory for Concrete Elements Subjected to Shear", ACI J., 83(2), 219-231. http://doi.org/10.14359/10416.
- Vecchio, F.J. and Collins, M.P. (1988), "Predicting the Response of Reinforced Concrete Beams Subjected to Shear Using Modified Compression Field Theory", ACI Struct. J., 85(3), 258-268. http://doi.org/10.14359/2515.
- Vecchio, F.J. and Collins, M.P. (1993), "Compression Response of Cracked Reinforced Concrete", J. Struct. Eng. ASCE, 119(2), 3590-3610. http://doi.org/10.1061/(asce)0733-9445(1993)119:12(3590).
- Walrarven, J.C. (1981), "Fundamental Analysis of Aggregate Interlock", J. Struct. Divison ASCE, 107(ST11), 2245-2270. https://doi.org/10.1061/JSDEAG.0005820
- Watanabe, F. and Lee, J.Y. (1998), "Theoretical Prediction of Shear Strength and and Failure Mode of Reinforced Concrete Beams", ACI Struct. J., 95(6), 749-757. http://doi.org/10.14359/588.
- Wight, J.K. (2015), Reinforced Concrete Mechanics and Design, Pearson, New York, USA.
- Zhang, D., Kim, J., Tulebekova, S., Saliyev, D. and Lee, D.H. (2018), "Structural Responses of Reinforced Concrete Pile Foundations Subjected to Pressures from Compressed Air for Renewable Energy Storage", J. Concrete Struct. Mater., 12(74), 1-16. http://dor.org/10.1186/s40069-018-0294-z.