References
- Abdalrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M., and Hendi, A.A. (2019), "Free and Forced Analysis of Perforated Beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
- Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Sturct. Syst., 18(6), 1125-1143. http://dx.doi.org/10.12989/sss.2016.18.6.1125
- Akbas, S. D. (2017), "Forced vibration analysis of functionally graded nanobeams", J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S. D. (2018a), "Forced vibration analysis of cracked nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1
- Akbas, S. D. (2018b), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
- Akbas, S. D. (2018c), "Investigation on Free and Forced Vibration of a Bi-Material Composite Beam", Journal of Polytechnic-Politeknik Dergisi, 21(1), 65-73.
- Akbas, S. D. (2019a), "Hygro-Thermal Nonlinear Analysis of a Functionally Graded Beam", J. Appl. Comput. Mech., 5(2), 477-485. https://doi.org/10.22055/JACM.2018.26819.1360
- Akbas, S. D. (2019b), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259
- Albino, J. C. R., Almeida, C. A., Menezes, I. F. M. and Paulino, G. H. (2018), "Co-rotational 3D beam element for nonlinear dynamic analysis of risers manufactured with functionally graded materials (FGMs)", Eng. Struct., 173, 283-299. https://doi.org/10.1016/j.engstruct.2018.05.092
- Almitani, K.H., Abdalrahmaan, A.A., Eltaher, M.A., (2019), "On Forced and Free Vibrations of Cutout Squared Beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
- Alshorbagy, A. E., Eltaher, M. A. and Mahmoud, F. F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Andrianov, I. V., Awrejcewicz, J. and Diskovsky, A. A. (2018), "Design optimization of FGM beam in stability problem", Eng. Comput., 36(1), 248-270. https://doi.org/10.1108/EC-03-2018-0108
- Assie, A. E., Eltaher, M. A. and Mahmoud, F. F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25(5), 1129. https://doi.org/10.1007/s12206-011-0302-6
- Attia, M. A., Eltaher, M. A., Soliman, A., Abdelrahman, A. A. and Alshorbagy, A. E. (2018), "Thermoelastic Crack Analysis in Functionally Graded Pipelines Conveying Natural Gas by an FEM", J. Appl. Mech., 10(04), 1850036. https://doi.org/10.1142/S1758825118500369
- Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111
- Doroushi, A., Eslami, M. R. and Komeili, A. (2011), "Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory", J. Intelligent Mater. Syst. Struct., 22(3), 231-243. https://doi.org/10.1177/1045389X11398162
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
- Eltaher, M. A., A. A. Abdelrahman, A. Al-Nabawy, M. Khater, and A. Mansour, (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028
- Eltaher, M. A., Attia, M. A., Soliman, A. E. and Alshorbagy, A. E. (2018a), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097
- Eltaher, M. A., Abdraboh, A. M. and Almitani, K. H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
- Eltaher, M. A., Mohamed, N., Mohamed, S. A. and Seddek, L. F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Modell., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026
- Eltaher, M. A., Omar, F. A., Abdalla, W. S. and Gad, E. H. (2019b), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves in Random and Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693
- Eltaher, M.A., Mohamed, S.A., (2020), "Buckling and Stability Analysis of Sandwich Beams subjected to Varying Axial Loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241
- Emam, S., Eltaher, M., Khater, M. and Abdalla, W. (2018), "Postbuckling and Free Vibration of Multilayer Imperfect Nanobeams under a Pre-Stress Load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238
- Esen, I. (2019), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033
- Hamed, M. A., Sadoun, A. M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089
- Hamed M.A., Mohamed, S.A., Eltaher, M.A., (2020), "Buckling Analysis of Sandwich Beam Rested on Elastic Foundation and Subjected to Varying Axial In-Plane Loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075
- He, X. Q., Ng, T. Y., Sivashanker, S. and Liew, K. M. (2001), "Active control of FGM plates with integrated piezoelectric sensors and actuators", J. Solids Struct., 38(9), 1641-1655. https://doi.org/10.1016/S0020-7683(00)00050-0
- Huang, Y., Wang, T., Zhao, Y. and Wang, P. (2018), "Effect of axially functionally graded material on whirling frequencies and critical speeds of a spinning Timoshenko beam", Compos. Struct., 192, 355-367. https://doi.org/10.1016/j.compstruct.2018.02.039
- Li, L., Liao, W. H., Zhang, D. and Zhang, Y. (2019), "Vibration control and analysis of a rotating flexible FGM beam with a lumped mass in temperature field", Compos. Struct., 208, 244-260. https://doi.org/10.1016/j.compstruct.2018.09.070
- Malekzadeh, P. and Monajjemzadeh, S.M. (2013), "Dynamic response of functionally graded plates in thermal environment under moving load", Compos. Part B Eng., 45(1), 1521-1533. https://doi.org/10.1016/j.compositesb.2012.09.022
- Malekzadeh, P. and Monajjemzadeh, S. M. (2015), "Nonlinear response of functionally graded plates under moving load", Thin-Wall. Struct., 96, 120-129. https://doi.org/10.1016/j.tws.2015.07.017
- Mohamed, N., Eltaher, M.A., Mohamed, S. and Seddek, L.F. (2019), "Energy Equivalent Model in Analysis of Postbuckling of Imperfect Carbon Nanotubes Resting on Nonlinear Elastic Foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737
- Rajasekaran, S. and Khaniki, H. B. (2019), "Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass", Appl. Math. Modell., 72, 129-154. https://doi.org/10.1016/j.apm.2019.03.021
- Shooshtari, A. and Rafiee, M. (2011), "Nonlinear forced vibration analysis of clamped functionally graded beams", Acta Mechanica, 221(1-2), 23. https://doi.org/10.1007/s00707-011-0491-1
- Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
- Su, Z., Jin, G. and Ye, T. (2016), "Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions", Smart Mater. Struct., 25(6), 065003. https://doi.org/10.1088/0964-1726/25/6/065003
- Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030
- Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014
- Xiang, H. J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Part B Eng., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
- Yang, J., Chen, Y., Xiang, Y. and Jia, X. L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1-2), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
Cited by
- Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2020, https://doi.org/10.12989/gae.2021.24.6.545
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
- Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.023
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307
- Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.663