DOI QR코드

DOI QR Code

Multi-Beams modelling for high-rise buildings subjected to static horizontal loads

  • Sgambi, Luca (Faculty of Architecture, Architectural Engineering and Urban Planning, Universite catholique de Louvain)
  • Received : 2019.10.19
  • Accepted : 2020.01.11
  • Published : 2020.08.10

Abstract

In general, the study of a high-rise building's behaviour when subjected to a horizontal load (wind or earthquake) is carried out through numerical modelling with finite elements method. This paper proposes a new, original approach based on the use of a multi-beams model. By redistributing bending and axial stiffness of horizontal elements (beams and slabs) along vertical elements, it becomes possible to produce a system of differential equations able to represent the structural behaviour of the whole building. In this paper this approach is applied to the study of bending behaviour in a 37-storey building (Torre Pontina, Latina, Italy) with a regular reinforced concrete structure. The load considered is the wind, estimated in accordance with Italian national technical rules and regulations. To simplify the explanation of the approach, the wind load was considered uniform on the height of building with a value equal to the average value of the wind load distribution. The system of differential equations' is assessed numerically, using Matlab, and compared with the obtainable solution from a finite elements model along with the obtainable solutions via classical Euler-Bernoulli beam theory. The comparison carried out demonstrates, in the case study examined, an excellent approximation of structural behaviour.

Keywords

References

  1. Abu-Hilal, M. (2006), "Dynamic response of a double Euler-Bernoulli beam due to a moving constant load", J. Sound Vib., 297, 477-491. https://doi.org/10.1016/j.jsv.2006.03.050.
  2. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11, 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  3. Alavi, A. and Rahgozar, R. (2018), "Optimal stiffness distribution in preliminary design of tubed-system tall buildings", Struct. Eng. Mech., 65(6), 731-739. https://doi.org/10.12989/sem.2018.65.6.731.
  4. Asai, T. and Watanabe, Y. (2017), "Outrigger tuned inertial mass electromagnetic transducers for high-rise buildings subject to long period earthquakes", Eng. Struct., 153, 404-410. https://doi.org/10.1016/j.engstruct.2017.10.040.
  5. Aydin, S. and Bozdogan, K.B. (2016), "Lateral stability analysis of multistory buildings using the differential transform method", Struct. Eng. Mech., 57(5), 861-876. https://doi.org/10.12989/sem.2016.57.5.861.
  6. Avini, R., Kumar, P., Hughes, S.J. (2019), "Wind loading on high-rise buildings and the comfort effects on the occupants", Sustainable Cities Soc., 45, 378-394. https://doi.org/10.1016/j.scs.2018.10.026.
  7. Barbato, M., Palmeri, A. and Petrini, F. (2014), "Special Issue on Performance-based engineering, Editorial foreword", Eng. Struct., 78, 1-2. http://dx.doi.org/10.1016/j.engstruct.2014.10.001.
  8. Barretta, R., Canadija, M. and Marotti de Sciarra, F. (2015), "A higher-order Eringen model for Bernoulli-Euler nanobeams", Arch. Appl. Mech., 86, 483-495, https://doi.org/10.1007/s00419-015-1037-0.
  9. Bateson, G. (1979), Mind and Nature: A Necessary Unity, New Ed. (31 January 2002), Hampton Press, New York, USA.
  10. Bathe, K.J. (1995), Finite Element Procedures, MIT, Pearson College Education Inc., USA.
  11. Bathe, K.J. (2019), "The AMORE paradigm for finite element analysis", Adv. Eng. Software, 130, 1-3. https://doi.org/10.1016/j.advengsoft.2018.11.010.
  12. Bayat, M. and Pakar, I. (2015), "Mathematical solution for nonlinear vibration equations using variational approach", Smart Struct. Syst., 15(5), 1311-1327. https://doi.org/10.12989/sss.2015.15.5.1311.
  13. Bayat, M. and Pakar, I. (2017), "Analytical study on non-natural vibration equations", Steel Compos. Struct., 24(6), 671-677. https://doi.org/10.12989/scs.2017.24.6.671.
  14. Brunesi, E., Nascimbene, R., Casagrande L. (2016), "Seismic analysis of high-rise mega-braced frame-core buildings", Eng. Struct., 115, 1-17. http://dx.doi.org/10.1016/j.engstruct.2016.02.019.
  15. Civalek, O. and Acar, M.H. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. J. Pressure Vessels Piping, 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
  16. Civalek, O. and Kiracioglu, O. (2010), "Free vibration analysis of Timoshenko beams by DSC method", J. Numerical Methods Biomedical Eng., 26, 1890-1898. https://doi.org/10.1002/cnm.1279.
  17. Cyrus, N.J. and Fulton, R.E. (1966), "Finite Difference Accuracy in Structural Analysis", J. Struct. Division, 92(6), 459-471. https://doi.org/10.1061/JSDEAG.0001566
  18. Falsone G. (2018), "The use of generalized functions modeling the concentrated loads on Timoshenko beams", Struct. Eng. Mech., 67(4), 385-390. https://doi.org/10.12989/sem.2018.67.4.385.
  19. Feras, H., Darwish, F.H., Al-Nimr, M.A. and Hatamleh, M.I. (2015), "Thermoelastic analysis for a slab made of a thermal diode-like material", Struct. Eng. Mech., 53(4), 645-659. https://doi.org/10.12989/sem.2015.53.4.645.
  20. Franchin, P., Petrini, F., Mollaioli, F. (2018), "Improved risk-targeted performance-based seismic design of reinforced concrete frame structures", Earthq. Eng. Struct. Dynam., 47(1), 49-67. https://doi.org/10.1002/eqe.2936.
  21. Fujita, K., Ikeda, A., Shirono, M. and Takewaki, I. (2015), "System identification of high-rise buildings using shear-bending model and ARX model: Experimental investigation", Earthq. Struct., 8(4), https://doi.org/10.12989/eas.2015.8.4.843.
  22. Garavaglia, E., Pizzigoni, A., Sgambi, L. and Basso N. (2013), "Collapse behaviour in reciprocal space frame structures", Struct. Eng. Mech., 46(4), 533-547. https://doi.org/10.12989/sem.2013.46.4.533.
  23. Han, F., Dan, D. and Cheng, W. (2018), "An exact solution for dynamic analysis of a complex double-beam system", Compos. Struct., 193, 295-305. https://doi.org/10.1016/j.compstruct.2018.03.088.
  24. Lazzari, P.M., Filho, A.C., Lazzari, B.M., Pacheco, A.R. and Gomes, R.R.S. (2019), "Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS", Struct. Eng. Mech., 69(3), 269-281. https://doi.org/10.12989/sem.2019.69.3.269.
  25. Lee, D., Ha, T., Jung, M. and Kim, J. (2014), "Evaluating high performance steel tube-framed diagrid for high-rise buildings", Steel Compos. Struct., 16(3), 289-303, https://doi.org/10.12989/scs.2014.16.3.289.
  26. Liu, S. and Yang, B. (2019), "A closed-form analytical solution method for vibration analysis of elastically connected double-beam systems", Compos. Struct., 212, 598-608. https://doi.org/10.1016/j.compstruct.2019.01.038.
  27. Lou, G.B. and Wang, A.J. (2015), "Studies into a high performance composite connection for high-rise buildings", Steel Compos. Struct., 19(4), https://doi.org/10.12989/scs.2015.19.4.789.
  28. Malerba, P.G. and Sgambi, L. (2014), "Riveted steel elements deformed by the swelling of interstitial rust. A study on a residual bearing capacity", Proceedings of the 7th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2014), Shanghai, China, 7-11 July 2014.
  29. Manju, S. and Mukherjee, S. (2019), "Function space formulation of the 3-noded distorted Timoshenko metric beam element", Struct. Eng. Mech., 69(6), 615-626. https://doi.org/10.12989/sem.2019.69.6.615.
  30. Niiranen, J. and Niemi, A.H. (2017), "Variational formulations and general boundary conditions for sixth-order boundary value problems of gradient-elastic Kirchhoff plates", Europ. J. Mech. A/Solids, 61, 164-179. https://doi.org/10.1016/j.euromechsol.2016.09.001.
  31. NTC2018 (2018), "Norme tecniche per le costruzioni - D.M. 17 Gennaio 2018", Supplemento ordinario alla Gazzetta Ufficiale n. 42, del 20 febbraio 2018 - Serie generale, Rome, Italy.
  32. Oniszczuk, Z. (2000), "Free transverse vibrations of elastically connected simply supported double-beams complex system", J. Sound Vib., 232, 387-403. https://doi.org/10.1006/jsvi.1999.2744.
  33. Pavlovic, R., Kozic, P. and Pavlovic, I. (2012), "Dynamic stability and instability of a double-beam system subjected to random forces", J. Mech. Sci., 62(1), 111-119. https://doi.org/10.1016/j.ijmecsci.2012.06.004.
  34. Petrini, F., Giaralis, A. and Wang, Z. (2020), "Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants' comfort serviceability performance and energy harvesting", Eng. Struct., 204, 109904, https://doi.org/10.1016/j.engstruct.2019.109904.
  35. Qiao, S., Han, X., Zhou, K. and Li, W. (2017), "Conceptual configuration and seismic performance of high-rise steel braced frame", Steel Compos. Struct., 23(2), 229-251. https://doi.org/10.12989/scs.2017.23.2.173.
  36. Tien, P.W. and Calautit, J.K. (2019), "Numerical analysis of the wind and thermal comfort in courtyards "skycourts" in high rise buildings", J. Build. Eng., 24, article 100735. https://doi.org/10.1016/j.jobe.2019.100735.
  37. Timoshenko, S. (1970), Theory of Elasticity, McGraw-Hill College; 3 edition, New York, USA.
  38. Samanipour, K. and Vafai, H. (2015), "Congestion effect on maximum dynamic stresses of bridges", Struct. Eng. Mech., 55(1), 111-135. https://doi.org/10.12989/sem.2015.55.1.111.
  39. Park, H.S., Lee, E., Choi, S.W., Oh, B.K., Cho, T. and Kim. Y. (2016), "Genetic-algorithm-based minimum weight design of an outrigger system for high-rise buildings", Eng. Struct., 117, 496-505. https://doi.org/10.1016/j.engstruct.2016.02.027.
  40. Shahrzad Soudian, S. and Berardi, U. (2017), "Experimental investigation of latent thermal energy storage in high-rise residential buildings in Toronto", Energy Procedia, 132, 249-254. https://doi.org/10.1016/j.egypro.2017.09.706.
  41. Sofi M., Lumantarna E., Zhong A., Mendis P.A. and Barnes R. (2018), "Determining dynamic characteristics of high rise buildings using interferometric radar system", Eng. Struct., 164, 230-242. https://doi.org/10.1016/j.engstruct.2018.02.084.
  42. Sgambi, L., Basso, N., Pavani, R., Civelli, E., Meroni, C.D. and Pagin, M. (2013), "Numerical models of a beam belonging to a tall building: errors and approximations within ordinary design", Proceedings of the 2nd International Conference on Structures and Architecture, Guimaraes, Portugal, 24-26 July 2013.
  43. Sgambi, L., Garavaglia, E., Basso, N. and Bontempi, F. (2014), "Monte Carlo simulation for seismic analysis of a long span suspension bridge". Eng. Struct., 78, 100-111. https://doi.org/10.1016/j.engstruct.2014.08.051.
  44. Sgambi, L. (2016), "Modelisation des structures: une science (in)exacte", LieuxDits, 14, 9-15.
  45. Sgambi, L. and Sato, B. (2019), "High-rise building modelling: numerical and analytical approaches", Proceedings of the 4nd International Conference on Structures and Architecture, Guimaraes, Portugal, 24-26, July.
  46. Vu, H.V., Ordonez, A.M. and Karnopp, B.H. (2000), "Vibration of a double-beam system", J. Sound Vib., 229, 807-822. https://doi.org/10.1006/jsvi.1999.2528.
  47. Wallerstein, D.W. (2001), A Variational Approach to Structural Analysis, Wiley-Interscience, New Jersey, USA.
  48. Wang, T.F., Lu, N.L. and Lan, P. (2016), "Analytical method for the out-of-plane buckling of the jib system with middle strut", Steel Compos. Struct., 21(5), 963-980. https://doi.org/10.12989/scs.2016.21.5.963.
  49. Wu, X., Li, Y. and Zhang, Y. (2017), "Elasto-plastic time history analysis of a 117-story high structure", Comput. Concrete, 19(1), 7-17. https://doi.org/10.12989/cac.2017.19.1.007.

Cited by

  1. A simplified method for free vibration analysis of wall-frames considering soil structure interaction vol.77, pp.1, 2021, https://doi.org/10.12989/sem.2021.77.1.037