DOI QR코드

DOI QR Code

Preparation of Cosmeceuticals Containing Flos Sophorae Immaturus Extracts: Optimization Using Box-Behnken Design Model

회화나무꽃 추출물이 함유된 Cosmeceuticals의 제조: Box-Behnken 설계모델을 이용한 최적화

  • Received : 2020.06.25
  • Accepted : 2020.07.13
  • Published : 2020.08.10

Abstract

In this study, the stability criteria of cosmeceuticals emulsion containing Flos Sophorae Immaturus extracts was established using the Box-Behnken design model (BBD-RSM). As optimization conditions of the emulsification using the BBD-RSM, the amount of surfactant and additive, and emulsification time and speed were used as quantitative factors while mean droplet size (MDS), viscosity and emulsion stability index (ESI) were used as reaction values. According to the result of BBD-RSM, optimum conditions for the emulsification were as follows; the emulsification time and speed of 17.8 min and 5505 rpm, respectively and amounts of the emulsifier and additive of 2.28 and 1.05 wt.%, respectively. Under these conditions, the MDS, viscosity, and ESI after 7 days from the reaction were estimated as 1875.5 nm, 1789.7 cP, and 93.8%, respectively. The average error value from our actual experiments for verifying the conclusions was below 5%, which is mainly due to the fact that the BBD-RSM was applied to the optimized cosmeceuticals emulsification.

본 연구에서는 Box-Behnken 설계모델(BBD-RSM)을 사용하여 회화나무꽃 추출물을 첨가한 cosmeceuticals 유화액의 안정성 조건을 최적화하였다. BBD-RSM의 독립변수로는 유화제의 첨가량, 회화나무꽃 추출물 첨가량, 유화시간, 유화속도 등을 설정하고, 반응치로는 O/W 유화액의 평균액적크기(MDS), 점도 및 유화안정도지수(ESI)를 설정하였다. BBD-RSM 최적화 분석결과 세 가지 반응치를 동시에 부합하는 최적조건은 유화시간(17.8 min), 유화속도(5505 rpm), 유화제의 첨가량(2.28 wt.%), 회화나무꽃 추출물 첨가량(1.05 wt.%)으로 산출되었으며, 이 조건에서의 BBD-RSM 예측결과는 MDS (1875.5 nm), 점도(1789.7 cP), ESI (93.8%)로 얻었다. 또한 이 조건에서 실제 실험을 통해 얻은 결과는 이론 결과에 비래 평균오차율은 5% 이하로 나타났다. 따라서 본 연구에서 BBD-RSM 최적화 분석을 적용할 경우 비교적 높은 유의수준의 만족하는 결과를 얻을 수 있었다.

Keywords

References

  1. C. C. Zouboulis and E. Makrantonaki, Clinical aspects and molecular diagnostics of skin aging, Clin. Dermatol., 29, 3-14 (2011). https://doi.org/10.1016/j.clindermatol.2010.07.001
  2. B. Polijsak, R. G. Dahmane, and A. Godic, Intrinsic skin aging: the role of oxidative stress, Acta Dermatovenerol. Alp. Pannonica Adriat., 21, 33-36 (2012).
  3. M. A. Farage, K. W. Miller, P. Elsner, and H. I, Maibach, Intrinsic and extrinsic fators in skin ageing: A review, Int. J. Cosmet. Sci., 30, 87-95 (2008). https://doi.org/10.1111/j.1468-2494.2007.00415.x
  4. A. Alberti, A. A. F. Zelinski, D. M. Zardo, I. M. Demiate, A. Nogueira, and L. I. Mafra, Optimisation of the extraction of phenolic compounds from apples using response surface methodology, Food Chem., 149, 151-158 (2014). https://doi.org/10.1016/j.foodchem.2013.10.086
  5. P. E. Ohale, C. F. Uzoh, and A. A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, Chem. Eng. J., 313, 993-1003 (2017). https://doi.org/10.1016/j.cej.2016.10.141
  6. Y. Lu and L. Y. Foo, Antioxidant and radical scavenging activities of polyphenols apple pomace, Food Chem., 68, 81-85 (2000). https://doi.org/10.1016/S0308-8146(99)00167-3
  7. S. Intahphuak, P. Khonsung, and A. Panthong, Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil, Pharm. Biol., 48(2), 151-157 (2010). https://doi.org/10.3109/13880200903062614
  8. A. M. Marina, Y. B. Cheman, S. A. H. Nazimah, and I. Amin, Antioxidant capacity and phenolic acids of virgin coconut oil, Int. J. Food Sci. Nutr,, 60(2), 114-123 (2009).
  9. G. Csoka, S. Marton, R. Zelko, N. Otomo, and I. Antal, Application of sucrose fatty acid esters in transdermal therapeutic systems, Eur. J. Pharm. Biopharm., 65(2), 233-237 (2007). https://doi.org/10.1016/j.ejpb.2006.07.009
  10. N. S. Neta, J. A. Teixeira, and L. R. Rodrigues, Sugar ester surfactants: Enzymatic synthesis and applications in food industry, Crit. Rev. Food Sci. Nutr., 55(5), 595-610 (2015). https://doi.org/10.1080/10408398.2012.667461
  11. S. S. Garud, I. A. Karimi, and M. Kraft, Design of computer experiments: A review, Comput. Chem. Eng., 106, 71-95 (2017). https://doi.org/10.1016/j.compchemeng.2017.05.010
  12. H. Toyota, T. Asai, and N. Oku, Process optimization by use of design of experiments: Application for liposomalization of FK506, Eur. J. Pharm. Sci., 102, 196-202 (2017). https://doi.org/10.1016/j.ejps.2017.03.007
  13. S. B. Lee, H. S. Jang, and B. H. Yoo, Preparation of waste cooking oil-based biodiesel using microwave energy: Optimization by box-behnken design model, Appl. Chem. Eng., 29(6), 746-752 (2018). https://doi.org/10.14478/ACE.2018.1083
  14. K. Han, C. Zuo and I. K. Hong, Extraction of antioxidants from Lonicera japonica and Sophora japonica L.: Optimization using central composite design model, Appl. Chem. Eng., 30(3), 337-344 (2019). https://doi.org/10.14478/ACE.2019.1024
  15. W. L. Kang, B. Xu, Y. J. Wang, Y. Li, X. H. Shan, F. An, and J. H. Liu, Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant, Colloids Surf. A, 384(1-3), 555-560 (2011). https://doi.org/10.1016/j.colsurfa.2011.05.017
  16. M. Homayoonfal, F. Khodaiyan, and M. Mousavi, Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability, Food Chem., 174, 649-659 (2015). https://doi.org/10.1016/j.foodchem.2014.10.117
  17. M. O. Saeed, K. Azizli, M. Isa and M. J. K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8, 7-16 (2015).
  18. M. Yolmeh, M. B. H. Najafi and R. Farhoosh, Optimisation of ultrasound- assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM), Food Chem., 155, 319-324 (2014). https://doi.org/10.1016/j.foodchem.2014.01.059
  19. M. Katsouli, V. Polychniatou and C. Tzia, Optimization of water in olive oil nano-emulsions coposition with bioactive compounds by response surface methodology, LWT Food Sci. Technol., 89, 740-748 (2018). https://doi.org/10.1016/j.lwt.2017.11.046