DOI QR코드

DOI QR Code

Research Trend on the Accumulation Routes of Microplastics in Soil and Their Analytical Methodologies

토양 내 미세플라스틱의 축적경로 및 분석기법 연구 동향

  • Choi, Hyung-Jun (Department of Environment Safety System Engineering, Semyung University) ;
  • An, Jinsung (Department of Environment Safety System Engineering, Semyung University) ;
  • Choi, Suk Soon (Department of Environment Safety System Engineering, Semyung University)
  • 최형준 (세명대학교 환경안전시스템공학과) ;
  • 안진성 (세명대학교 환경안전시스템공학과) ;
  • 최석순 (세명대학교 환경안전시스템공학과)
  • Received : 2020.07.16
  • Accepted : 2020.07.23
  • Published : 2020.08.10

Abstract

In this study, the accumulation and distribution routes of microplastics in soil environment were examined, and their analytical methodologies were summarized. Density separation and removal process of inhibition materials were introduced for the separation of microplastics in soil and the basic principles and limitations of quantitative and qualitative analyses including pyrolysis gas chromatography mass spectrometry, µ-Raman spectrometry, fourier transform infrared spectrometry, and microscopes were investigated. Chemical extraction methods for the analysis of mediated hazardous substance (additives and sorbed matters) in microplastics were also discussed with focusing on in vitro bioaccessibility assay for the human oral exposure route. Based on the described methodologies for the analysis of microplastics in soil, it is expected that these methods enable to select appropriate analysis techniques in consideration of medium state, contamination level and sample quantity.

본 연구에서는 미세플라스틱의 토양 내 축적경로와 분포현황에 대해 살펴보고, 토양시료 내 미세플라스틱 분석기법을 요약 제시하였다. 토양으로부터 미세플라스틱을 분리해내는 밀도차 선별 및 방해물질 제거과정과 정성/정량분석 기법으로써 pyrolysis gas chromatography mass spectrometry, µ-Raman spectrometry, fourier transform infrared spectrometry와 microscope 방법의 기본원리 및 분석의 한계점에 대해 살펴보았다. 미세플라스틱 매개 유해물질(첨가제 및 흡착물질)의 분석을 위한 화학적 추출방법을 인체 경구 섭취경로에 대한 in vitro 생물학적접근성 평가법을 중심으로 조사하였다. 본 연구에서 제시한 토양 중 미세플라스틱 분석기법의 원리를 바탕으로 매질상태, 오염수준 및 시료수량 등을 고려한 합리적인 분석기법의 선정이 가능하리라 기대된다.

Keywords

References

  1. C. M. Rochman, M. A. Browne, B. S. Halpern, B. T. Hentschel, E. Hoh, H. K. Karapanagioti, L. M. Rios-Mendoza, H. Takada, S. Teh, and R. C. Thompson, Classify plastic waste as hazardous, Nature, 494, 169-171 (2013). https://doi.org/10.1038/494169a
  2. J. M. Coe, G. B. Antonelis, and K. Moy, Taking control of persistent solid waste pollution, Mar. Pollut. Bull., 139, 105-110 (2019). https://doi.org/10.1016/j.marpolbul.2018.12.004
  3. R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made - Supplementary information, Sci. Adv., 3(7), 19-24 (2017).
  4. R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle, and A. E. Russell, Lost at sea: Where is all the plastic?, Science, 304, 838 (2004). https://doi.org/10.1126/science.1094559
  5. M. S. Helmberger, L. K. Tiemann, and M. J. Grieshop, Towards an ecology of soil microplastics, Funct. Ecol., 34(3), 550-560 (2020). https://doi.org/10.1111/1365-2435.13495
  6. P. Wang, E. Lombi, F. J. Zhao, and P. M. Kopittke, Nanotechnology: A new opportunity in plant sciences, Trends Plant Sci., 21, 699-712 (2016). https://doi.org/10.1016/j.tplants.2016.04.005
  7. J. Wang, S. Lv, M. Zhang, G. Chen, T. Zhu, S. Zhang, Y. Teng, P. Christie, and Y. Luo, Effects of plastic film residues on occurrence of phthalates and microbial activity in soils, Chemosphere, 151, 171-177 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.076
  8. A. B. Morales-Diaz, H. Ortega-Ortiz, A. Juarez-Maldonado, G. Cadenas-Pliego, S. Gonzalez-Moralesand A. Benavides-Mendoza, Application of nanoelements in plant nutrition and its impact in ecosystems, Adv. Nat. Sci. Nanosci. Nanotechnol., 8, 13 (2017).
  9. M. C. Rillig, Microplastic in terrestrial ecosystems and the soil?, Environ. Sci. Technol., 46(12), 6453-6454 (2012). https://doi.org/10.1021/es302011r
  10. Z. Steinmetz, C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Troger, K. Munoz, O. Fror, and G. E. Schaumann, Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, Sci. Total Environ., 550, 690-705 (2016). https://doi.org/10.1016/j.scitotenv.2016.01.153
  11. N. Weithmann, J. N. Moller, M. G. J. Löder, S. Piehl, C. Laforsch, and R. Freitag, Organic fertilizer as a vehicle for the entry of microplastic into the environment, Sci. Adv., 4(4), 1-7 (2018).
  12. M. Bläsing and W. Amelung, Plastics in soil: Analytical methods and possible sources, Sci. Total Environ., 612, 422-435 (2018). https://doi.org/10.1016/j.scitotenv.2017.08.086
  13. WRAP, Using Compost in Agriculture and Field Horticulture, Waste and Resources Action Programme (2002).
  14. S. M. Mintenig, I. Int-Veen, M. G. J. Löder, S. Primpke, and G. Gerdts, Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Res., 108, 365-372 (2017). https://doi.org/10.1016/j.watres.2016.11.015
  15. A. M. Mahon, B. O'Connell, M.G. Healy, I. O'Connor, R. Officer, R. Nash, and L. Morrison, Microplastics in sewage sludge: Effects of treatment, Environ. Sci. Technol., 51(2), 810-818 (2017). https://doi.org/10.1021/acs.est.6b04048
  16. L. Nizzetto, M. Futter, and S. Langaas, Are agricultural soils dumps for microplastics of urban origin?, Environ. Sci. Technol., 50(20), 10777-10779 (2016). https://doi.org/10.1021/acs.est.6b04140
  17. Y. Zhao, Y. Li, J. Wang, H. Pang, and Y. Li, Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils, Soil Tillage Res., 155, 363-370 (2016). https://doi.org/10.1016/j.still.2015.08.019
  18. Y. Fan, R. Ding, and S. Kang, Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland, Agric. Water Manag., 179, 122-131 (2017). https://doi.org/10.1016/j.agwat.2016.08.019
  19. E. Espi, A. Salmeron, A. Fontecha, Y. Garcia, and A. I. Real, Plastic films for agricultural applications, J. Plast. Film Sheeting, 22(2), 85-102 (2006). https://doi.org/10.1177/8756087906064220
  20. L. Ramos, G. Berenstein, E. A. Hughes, A. Zalts, and J. M. Montserrat, Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina, Sci. Total Environ., 523, 74-81 (2015). https://doi.org/10.1016/j.scitotenv.2015.03.142
  21. J. S. Hanvey, P. J. Lewis, J. L. Lavers, N. D. Crosbie, K. Pozo, and B. O. Clarke, A review of microplastics in analytical techniques for quantifying sediments, Anal. Methods, 9(9), 1369-1383 (2017). https://doi.org/10.1039/C6AY02707E
  22. M. T. Nuelle, J. H. Dekiff, D. Remy, and E. Fries, A new analytical approach for monitoring microplastics in marine sediments, Environ. Pollut., 184, 161-169 (2014). https://doi.org/10.1016/j.envpol.2013.07.027
  23. X. Han, X. Lu, and R. D. Vogt, An optimized density-based approach for extracting microplastics from soil and sediment samples, Environ. Pollut., 254, 113009 (2019). https://doi.org/10.1016/j.envpol.2019.113009
  24. K. J. McDermid, and T. L. McMullen, Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago, Mar. Pollut. Bull., 48, 790-794 (2004). https://doi.org/10.1016/j.marpolbul.2003.10.017
  25. D. A. Cooper, and P. L. Corcoran, Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii, Mar. Pollut. Bull., 60(5), 650-654 (2010). https://doi.org/10.1016/j.marpolbul.2009.12.026
  26. G. Liebezeit, and F. Dubaish, Microplastics in beaches of the East Frisian Islands Spiekeroog and Kachelotplate, Bull. Environ. Contam. Toxicol., 89(1), 213-217 (2012). https://doi.org/10.1007/s00128-012-0642-7
  27. H. K. Imhof, N. P. Ivleva, J. Schmid, R. Niessner, and C. Laforsch, Contamination of beach sediments of a subalpine lake with microplastic particles, Curr. Biol., 23(19), R867-R868 (2013).
  28. M. Eriksen, S. Mason, S. Wilson, C. Box, A. Zellers, W. Edwards, H. Farley, and S. Amato, Microplastic pollution in the surface waters of the Laurentian Great Lakes, Mar. Pollut. Bull., 77, 177-182 (2013). https://doi.org/10.1016/j.marpolbul.2013.10.007
  29. M. Cole, H. Webb, P. K. Lindeque, E. S. Fileman, C. Halsband, and T. S. Galloway, Isolation of microplastics in biota-rich seawater samples and marine organisms, Sci. Rep., 4, 1-8 (2014).
  30. E. Fries, J. H. Dekiff, J. Willmeyer, M. T. Nuelle, M. Ebert, and D. Remy, Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy, Environ. Sci.: Processes Impacts, 15, 1949-1956 (2013). https://doi.org/10.1039/c3em00214d
  31. M. Bergmann, L. Gutow, M. Klages (Eds.), Methodology Used for the Detection and Identification of Microplastics - A Critical Appraisal, 201-227, Berlin (2015).
  32. L. V. Cauwenberghe, A. Vanreusel, J. Mees, and C. R. Janssen, Microplastic pollution in deep-sea sediments, Environ. Pollut., 182, 495-499 (2013). https://doi.org/10.1016/j.envpol.2013.08.013
  33. M. Cole, P. Lindeque, E. Fileman, C. Halsband, R. Goodhead, J. Moger, and T. S. Galloway, Microplastic ingestion by zooplankton, Environ. Sci. Technol., 47, 6646-6655 (2013). https://doi.org/10.1021/es400663f
  34. F. Murray and P. R. Cowie, Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758), Mar. Pollut. Bull., 62, 1207-1217 (2011). https://doi.org/10.1016/j.marpolbul.2011.03.032
  35. T. S. Galloway, Matthew Cole, and C. Lewis, Interactions of microplastic debris throughout the marine ecosystem, Nat. Ecol. Evol., 1, 116 (2017). https://doi.org/10.1038/s41559-017-0116
  36. Z. Sobhani, X. Zhang, C. Gibson, R. Naidu, M. Megharaj, and C. Fang, Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm, Water Res., 174, 115658 (2020). https://doi.org/10.1016/j.watres.2020.115658
  37. V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, and M. Thiel, Microplastics in the marine environment: A review of the methods used for identification and quantification, Environ. Sci. Technol., 46, 3060-3075 (2012). https://doi.org/10.1021/es2031505
  38. J. P. Harrison, J. J. Ojeda, and M. E. Romero-Gonzalez, The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments, Sci. Total Environ., 416, 455-463 (2012). https://doi.org/10.1016/j.scitotenv.2011.11.078
  39. J. P. W. Desforges, M. Galbraith, N. Dangerfield, and P. S. Ross, Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean, Mar. Pollut. Bull., 79, 94-99 (2014). https://doi.org/10.1016/j.marpolbul.2013.12.035
  40. B. J. Laglbauer, M. R. Franco-Santos, M. Andreu-Cazenave, L. Brunelli, M. Papadatou, A. Palatinus, M. Grego, and T. Deprez, Macrodebris and microplastics from beaches in Slovenia, Mar. Pollut. Bull., 89, 356-366 (2014). https://doi.org/10.1016/j.marpolbul.2014.09.036
  41. A. Mathalon and P. Hill, Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia, Mar. Pollut. Bull., 81, 69-79 (2014). https://doi.org/10.1016/j.marpolbul.2014.02.018
  42. Y. K. Song, S. H. Hong, M. Jang, G. M. Han, M. Rani, J. Lee, and W. J. Shim, A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples, Mar. Pollut. Bull., 93, 202-209 (2015). https://doi.org/10.1016/j.marpolbul.2015.01.015
  43. J. Wang, J. Peng, Z. Tan, Y. Gao, Z. Zhan, Q. Chen, and L. Cai, Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals, Chemosphere, 171, 248-258 (2017). https://doi.org/10.1016/j.chemosphere.2016.12.074
  44. W. J. Shim, S. H. Hong, and S. E. Eo, Identification methods in microplastic analysis: A review, Anal. Methods, 9(9), 1384-1391 (2017). https://doi.org/10.1039/C6AY02558G
  45. G. Liu, Z. Zhu, Y. Yang, Y. Sun, F. Yu, and J. Ma, Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater, Environ. Pollut., 246, 26-33 (2019). https://doi.org/10.1016/j.envpol.2018.11.100
  46. J. Wang, X. Liu, Y. Li, T. Powell, X. Wang, G. Wang, and P. Zhang, Microplastics as contaminants in the soil environment: A mini-review, Sci. Total Environ., 691, 848-857 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.209
  47. P. Liu, L. Qian, H. Wang, X. Zhan, K. Lu, C. Gu, and S. Gao, New insights into the aging behavior of microplastics accelerated by advanced oxidation processes, Environ. Sci. Technol., 53(7), 3579-3588 (2019). https://doi.org/10.1021/acs.est.9b00493
  48. J. Yang, Q. Sun, Ge Dong, S. T. Ata-Ul-Karim, and D. Zhou, Effects of soil environmental factors and UV aging on $Cu^{2+}$, Environ. Sci. Pollut. Res., 26, 23027-23036 (2019) https://doi.org/10.1007/s11356-019-05643-8
  49. A. L. Juhasz, J. Weber, and E. Smith, Influence of saliva, gasric and intestinal phases on the prediction of As relative bioavailiablity using the Unified Bioaccessibility Research Group of Europe Method (UBM), J. Hazard. Mater., 197, 161-168 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.068
  50. N. Yin, H. Du, Z. Zhang, X. Cai, Z. Li, G. Sun, and Y. Cui, Variability of arsenic bioaccessibility and metabolism in soils by human gut microbiota using different in vitro methods comnited with SHIME, Sci. Total Environ., 566-567, 1670-1677 (2016). https://doi.org/10.1016/j.scitotenv.2016.06.071
  51. M. E. Kelley, S. Brauning, R. Schoof, and M. Ruby, Assessing Oral Bioavailability of Metals in Soil, Battelle Press, Columbus (2002).
  52. M. V. Ruby, A. Davis, R. Schoof, S. Eberle, and C. M. Sellstone, Estimation of lead and arsenic bioavailability using a physiologically based extraction test, Environ. Sci. Technol., 30, 422-430 (1996). https://doi.org/10.1021/es950057z
  53. K. James, R. E. Peters, M. R. Cave, M. Wickstrom, and S. D. Siciliano, In vitro prediction of polycyclic aromatic hydrocarbon bioavailability of 14 different incidentally ingested soils in juvenile swine, Sci. Total Environ., 618, 682-689 (2018). https://doi.org/10.1016/j.scitotenv.2017.07.244
  54. S. Zhang, C. Li, Y. Li, R. Zhang, P. Gao, X. Cui, and L. Q. Ma, Bioaccessibility of PAHs in contaminated soils: Comparison of five in vitro methods with Tenax as a sorption sink, Sci. Total Environ., 601-602, 968-974 (2017). https://doi.org/10.1016/j.scitotenv.2017.05.234
  55. C. M. Bailey-Hytholt, T. Puranik, A. Tripathi, and A. Shukla, Investigating interactions of phthalate environmental toxicants with lipid structures, Colloids Surf. B, 190, 110923 (2020). https://doi.org/10.1016/j.colsurfb.2020.110923
  56. X. Chen, A. Singh, and D.D. Kitts, In-vitro bioaccessibility and bioavailability of heavy metals in mineral clay complex used in natural health products, Sci. Rep., 10, 8823 (2020). https://doi.org/10.1038/s41598-020-65449-4
  57. A. Guerra, L. Etienne-Mesmin, V. Livrelli, S. Denis, S. Blanquet-Diot, and M. Alric, Relevance and challenges in modeling human gastric and small intestinal digestion, Trends Biotechnol., 30(11), 591-600 (2012). https://doi.org/10.1016/j.tibtech.2012.08.001
  58. J. Sun, X. Dai, Q. Wang, M. C. M. van-Loosdrecht, Bi. J. Ni, Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Res., 152, 21-37 (2019) https://doi.org/10.1016/j.watres.2018.12.050
  59. R. Scalenghe, Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options, Heliyon, 4, e00941 (2018). https://doi.org/10.1016/j.heliyon.2018.e00941