References
- C. M. Rochman, M. A. Browne, B. S. Halpern, B. T. Hentschel, E. Hoh, H. K. Karapanagioti, L. M. Rios-Mendoza, H. Takada, S. Teh, and R. C. Thompson, Classify plastic waste as hazardous, Nature, 494, 169-171 (2013). https://doi.org/10.1038/494169a
- J. M. Coe, G. B. Antonelis, and K. Moy, Taking control of persistent solid waste pollution, Mar. Pollut. Bull., 139, 105-110 (2019). https://doi.org/10.1016/j.marpolbul.2018.12.004
- R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made - Supplementary information, Sci. Adv., 3(7), 19-24 (2017).
- R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle, and A. E. Russell, Lost at sea: Where is all the plastic?, Science, 304, 838 (2004). https://doi.org/10.1126/science.1094559
- M. S. Helmberger, L. K. Tiemann, and M. J. Grieshop, Towards an ecology of soil microplastics, Funct. Ecol., 34(3), 550-560 (2020). https://doi.org/10.1111/1365-2435.13495
- P. Wang, E. Lombi, F. J. Zhao, and P. M. Kopittke, Nanotechnology: A new opportunity in plant sciences, Trends Plant Sci., 21, 699-712 (2016). https://doi.org/10.1016/j.tplants.2016.04.005
- J. Wang, S. Lv, M. Zhang, G. Chen, T. Zhu, S. Zhang, Y. Teng, P. Christie, and Y. Luo, Effects of plastic film residues on occurrence of phthalates and microbial activity in soils, Chemosphere, 151, 171-177 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.076
- A. B. Morales-Diaz, H. Ortega-Ortiz, A. Juarez-Maldonado, G. Cadenas-Pliego, S. Gonzalez-Moralesand A. Benavides-Mendoza, Application of nanoelements in plant nutrition and its impact in ecosystems, Adv. Nat. Sci. Nanosci. Nanotechnol., 8, 13 (2017).
- M. C. Rillig, Microplastic in terrestrial ecosystems and the soil?, Environ. Sci. Technol., 46(12), 6453-6454 (2012). https://doi.org/10.1021/es302011r
- Z. Steinmetz, C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Troger, K. Munoz, O. Fror, and G. E. Schaumann, Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, Sci. Total Environ., 550, 690-705 (2016). https://doi.org/10.1016/j.scitotenv.2016.01.153
- N. Weithmann, J. N. Moller, M. G. J. Löder, S. Piehl, C. Laforsch, and R. Freitag, Organic fertilizer as a vehicle for the entry of microplastic into the environment, Sci. Adv., 4(4), 1-7 (2018).
- M. Bläsing and W. Amelung, Plastics in soil: Analytical methods and possible sources, Sci. Total Environ., 612, 422-435 (2018). https://doi.org/10.1016/j.scitotenv.2017.08.086
- WRAP, Using Compost in Agriculture and Field Horticulture, Waste and Resources Action Programme (2002).
- S. M. Mintenig, I. Int-Veen, M. G. J. Löder, S. Primpke, and G. Gerdts, Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Res., 108, 365-372 (2017). https://doi.org/10.1016/j.watres.2016.11.015
- A. M. Mahon, B. O'Connell, M.G. Healy, I. O'Connor, R. Officer, R. Nash, and L. Morrison, Microplastics in sewage sludge: Effects of treatment, Environ. Sci. Technol., 51(2), 810-818 (2017). https://doi.org/10.1021/acs.est.6b04048
- L. Nizzetto, M. Futter, and S. Langaas, Are agricultural soils dumps for microplastics of urban origin?, Environ. Sci. Technol., 50(20), 10777-10779 (2016). https://doi.org/10.1021/acs.est.6b04140
- Y. Zhao, Y. Li, J. Wang, H. Pang, and Y. Li, Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils, Soil Tillage Res., 155, 363-370 (2016). https://doi.org/10.1016/j.still.2015.08.019
- Y. Fan, R. Ding, and S. Kang, Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland, Agric. Water Manag., 179, 122-131 (2017). https://doi.org/10.1016/j.agwat.2016.08.019
- E. Espi, A. Salmeron, A. Fontecha, Y. Garcia, and A. I. Real, Plastic films for agricultural applications, J. Plast. Film Sheeting, 22(2), 85-102 (2006). https://doi.org/10.1177/8756087906064220
- L. Ramos, G. Berenstein, E. A. Hughes, A. Zalts, and J. M. Montserrat, Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina, Sci. Total Environ., 523, 74-81 (2015). https://doi.org/10.1016/j.scitotenv.2015.03.142
- J. S. Hanvey, P. J. Lewis, J. L. Lavers, N. D. Crosbie, K. Pozo, and B. O. Clarke, A review of microplastics in analytical techniques for quantifying sediments, Anal. Methods, 9(9), 1369-1383 (2017). https://doi.org/10.1039/C6AY02707E
- M. T. Nuelle, J. H. Dekiff, D. Remy, and E. Fries, A new analytical approach for monitoring microplastics in marine sediments, Environ. Pollut., 184, 161-169 (2014). https://doi.org/10.1016/j.envpol.2013.07.027
- X. Han, X. Lu, and R. D. Vogt, An optimized density-based approach for extracting microplastics from soil and sediment samples, Environ. Pollut., 254, 113009 (2019). https://doi.org/10.1016/j.envpol.2019.113009
- K. J. McDermid, and T. L. McMullen, Quantitative analysis of small-plastic debris on beaches in the Hawaiian archipelago, Mar. Pollut. Bull., 48, 790-794 (2004). https://doi.org/10.1016/j.marpolbul.2003.10.017
- D. A. Cooper, and P. L. Corcoran, Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii, Mar. Pollut. Bull., 60(5), 650-654 (2010). https://doi.org/10.1016/j.marpolbul.2009.12.026
- G. Liebezeit, and F. Dubaish, Microplastics in beaches of the East Frisian Islands Spiekeroog and Kachelotplate, Bull. Environ. Contam. Toxicol., 89(1), 213-217 (2012). https://doi.org/10.1007/s00128-012-0642-7
- H. K. Imhof, N. P. Ivleva, J. Schmid, R. Niessner, and C. Laforsch, Contamination of beach sediments of a subalpine lake with microplastic particles, Curr. Biol., 23(19), R867-R868 (2013).
- M. Eriksen, S. Mason, S. Wilson, C. Box, A. Zellers, W. Edwards, H. Farley, and S. Amato, Microplastic pollution in the surface waters of the Laurentian Great Lakes, Mar. Pollut. Bull., 77, 177-182 (2013). https://doi.org/10.1016/j.marpolbul.2013.10.007
- M. Cole, H. Webb, P. K. Lindeque, E. S. Fileman, C. Halsband, and T. S. Galloway, Isolation of microplastics in biota-rich seawater samples and marine organisms, Sci. Rep., 4, 1-8 (2014).
- E. Fries, J. H. Dekiff, J. Willmeyer, M. T. Nuelle, M. Ebert, and D. Remy, Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy, Environ. Sci.: Processes Impacts, 15, 1949-1956 (2013). https://doi.org/10.1039/c3em00214d
- M. Bergmann, L. Gutow, M. Klages (Eds.), Methodology Used for the Detection and Identification of Microplastics - A Critical Appraisal, 201-227, Berlin (2015).
- L. V. Cauwenberghe, A. Vanreusel, J. Mees, and C. R. Janssen, Microplastic pollution in deep-sea sediments, Environ. Pollut., 182, 495-499 (2013). https://doi.org/10.1016/j.envpol.2013.08.013
- M. Cole, P. Lindeque, E. Fileman, C. Halsband, R. Goodhead, J. Moger, and T. S. Galloway, Microplastic ingestion by zooplankton, Environ. Sci. Technol., 47, 6646-6655 (2013). https://doi.org/10.1021/es400663f
- F. Murray and P. R. Cowie, Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758), Mar. Pollut. Bull., 62, 1207-1217 (2011). https://doi.org/10.1016/j.marpolbul.2011.03.032
- T. S. Galloway, Matthew Cole, and C. Lewis, Interactions of microplastic debris throughout the marine ecosystem, Nat. Ecol. Evol., 1, 116 (2017). https://doi.org/10.1038/s41559-017-0116
- Z. Sobhani, X. Zhang, C. Gibson, R. Naidu, M. Megharaj, and C. Fang, Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm, Water Res., 174, 115658 (2020). https://doi.org/10.1016/j.watres.2020.115658
- V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, and M. Thiel, Microplastics in the marine environment: A review of the methods used for identification and quantification, Environ. Sci. Technol., 46, 3060-3075 (2012). https://doi.org/10.1021/es2031505
- J. P. Harrison, J. J. Ojeda, and M. E. Romero-Gonzalez, The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments, Sci. Total Environ., 416, 455-463 (2012). https://doi.org/10.1016/j.scitotenv.2011.11.078
- J. P. W. Desforges, M. Galbraith, N. Dangerfield, and P. S. Ross, Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean, Mar. Pollut. Bull., 79, 94-99 (2014). https://doi.org/10.1016/j.marpolbul.2013.12.035
- B. J. Laglbauer, M. R. Franco-Santos, M. Andreu-Cazenave, L. Brunelli, M. Papadatou, A. Palatinus, M. Grego, and T. Deprez, Macrodebris and microplastics from beaches in Slovenia, Mar. Pollut. Bull., 89, 356-366 (2014). https://doi.org/10.1016/j.marpolbul.2014.09.036
- A. Mathalon and P. Hill, Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia, Mar. Pollut. Bull., 81, 69-79 (2014). https://doi.org/10.1016/j.marpolbul.2014.02.018
- Y. K. Song, S. H. Hong, M. Jang, G. M. Han, M. Rani, J. Lee, and W. J. Shim, A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples, Mar. Pollut. Bull., 93, 202-209 (2015). https://doi.org/10.1016/j.marpolbul.2015.01.015
- J. Wang, J. Peng, Z. Tan, Y. Gao, Z. Zhan, Q. Chen, and L. Cai, Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals, Chemosphere, 171, 248-258 (2017). https://doi.org/10.1016/j.chemosphere.2016.12.074
- W. J. Shim, S. H. Hong, and S. E. Eo, Identification methods in microplastic analysis: A review, Anal. Methods, 9(9), 1384-1391 (2017). https://doi.org/10.1039/C6AY02558G
- G. Liu, Z. Zhu, Y. Yang, Y. Sun, F. Yu, and J. Ma, Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater, Environ. Pollut., 246, 26-33 (2019). https://doi.org/10.1016/j.envpol.2018.11.100
- J. Wang, X. Liu, Y. Li, T. Powell, X. Wang, G. Wang, and P. Zhang, Microplastics as contaminants in the soil environment: A mini-review, Sci. Total Environ., 691, 848-857 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.209
- P. Liu, L. Qian, H. Wang, X. Zhan, K. Lu, C. Gu, and S. Gao, New insights into the aging behavior of microplastics accelerated by advanced oxidation processes, Environ. Sci. Technol., 53(7), 3579-3588 (2019). https://doi.org/10.1021/acs.est.9b00493
-
J. Yang, Q. Sun, Ge Dong, S. T. Ata-Ul-Karim, and D. Zhou, Effects of soil environmental factors and UV aging on
$Cu^{2+}$ , Environ. Sci. Pollut. Res., 26, 23027-23036 (2019) https://doi.org/10.1007/s11356-019-05643-8 - A. L. Juhasz, J. Weber, and E. Smith, Influence of saliva, gasric and intestinal phases on the prediction of As relative bioavailiablity using the Unified Bioaccessibility Research Group of Europe Method (UBM), J. Hazard. Mater., 197, 161-168 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.068
- N. Yin, H. Du, Z. Zhang, X. Cai, Z. Li, G. Sun, and Y. Cui, Variability of arsenic bioaccessibility and metabolism in soils by human gut microbiota using different in vitro methods comnited with SHIME, Sci. Total Environ., 566-567, 1670-1677 (2016). https://doi.org/10.1016/j.scitotenv.2016.06.071
- M. E. Kelley, S. Brauning, R. Schoof, and M. Ruby, Assessing Oral Bioavailability of Metals in Soil, Battelle Press, Columbus (2002).
- M. V. Ruby, A. Davis, R. Schoof, S. Eberle, and C. M. Sellstone, Estimation of lead and arsenic bioavailability using a physiologically based extraction test, Environ. Sci. Technol., 30, 422-430 (1996). https://doi.org/10.1021/es950057z
- K. James, R. E. Peters, M. R. Cave, M. Wickstrom, and S. D. Siciliano, In vitro prediction of polycyclic aromatic hydrocarbon bioavailability of 14 different incidentally ingested soils in juvenile swine, Sci. Total Environ., 618, 682-689 (2018). https://doi.org/10.1016/j.scitotenv.2017.07.244
- S. Zhang, C. Li, Y. Li, R. Zhang, P. Gao, X. Cui, and L. Q. Ma, Bioaccessibility of PAHs in contaminated soils: Comparison of five in vitro methods with Tenax as a sorption sink, Sci. Total Environ., 601-602, 968-974 (2017). https://doi.org/10.1016/j.scitotenv.2017.05.234
- C. M. Bailey-Hytholt, T. Puranik, A. Tripathi, and A. Shukla, Investigating interactions of phthalate environmental toxicants with lipid structures, Colloids Surf. B, 190, 110923 (2020). https://doi.org/10.1016/j.colsurfb.2020.110923
- X. Chen, A. Singh, and D.D. Kitts, In-vitro bioaccessibility and bioavailability of heavy metals in mineral clay complex used in natural health products, Sci. Rep., 10, 8823 (2020). https://doi.org/10.1038/s41598-020-65449-4
- A. Guerra, L. Etienne-Mesmin, V. Livrelli, S. Denis, S. Blanquet-Diot, and M. Alric, Relevance and challenges in modeling human gastric and small intestinal digestion, Trends Biotechnol., 30(11), 591-600 (2012). https://doi.org/10.1016/j.tibtech.2012.08.001
- J. Sun, X. Dai, Q. Wang, M. C. M. van-Loosdrecht, Bi. J. Ni, Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Res., 152, 21-37 (2019) https://doi.org/10.1016/j.watres.2018.12.050
- R. Scalenghe, Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options, Heliyon, 4, e00941 (2018). https://doi.org/10.1016/j.heliyon.2018.e00941