References
- J. R. Lamarsh and A. J. Baratta, Introduction to Nuclear Engineering, 4th ed., 244-245, Pearson, USA (2017).
- K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, and W. J. Weber, Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun., 9, 1-8 (2018). https://doi.org/10.1038/s41467-017-02088-w
- K. Vortler, C. Bjorkas, D. Terentyev, L. Malerba, and K. Nordlund, The effect of Cr concentration on radiation damage in Fe-Cr alloys, J. Nucl. Mater., 382, 24-30 (2008). https://doi.org/10.1016/j.jnucmat.2008.09.007
- D. A. Porter and E. Easterling, Phase Transformations in Metals and Alloys, 3rd ed., 244-245, CRC press, USA (2009).
- C. H. Woo and W. Frank, The influence of temperature on void-lattice formation and swelling, J. Nucl. Mater., 148, 121-135 (1987). https://doi.org/10.1016/0022-3115(87)90104-8
- T. Nuroga, H. Watanabe, and N. Yoshida, Correlation of fast neutron, fusion neutron and electron irradiations based on the dislocation loop density, J. Nucl. Mater., 174, 282-288 (1990). https://doi.org/10.1016/0022-3115(90)90241-E
- A. D. Brasilsford and R. Bull, The influence of temperature on void-lattice formation and swelling, J. Nucl. Mater., 44, 121-135 (1972). https://doi.org/10.1016/0022-3115(72)90091-8
- M. Li, M. A. Kirk, P. M. Baldo, D. Xu, and B. D. Wirth, Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling, Philos. Mag., 92, 2048-2078 (2012). https://doi.org/10.1080/14786435.2012.662601
- P. J. Maziasz, R. L. Klueh, and J. M. Vitek, Helium effects on void formation in 9Cr-1MoVNb and 12Cr-1MoVW irradiated in HFIR, J. Nucl. Mater., 141, 929-937 (1986). https://doi.org/10.1016/0022-3115(86)90120-0
- L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140 (2002). https://doi.org/10.1146/annurev.matsci.32.112001.132041
- M. R. Tonks, A. Cheniour, and L. Aagesen, How to apply the phase field method to model radiation damage, Comput. Mater. Sci., 147, 353-362 (2018). https://doi.org/10.1016/j.commatsci.2018.02.007
- Y. Li, S. Hu, X. Sun, and M. Stan, A review: Applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials, Npj Comput. Mater., 3, 1-17 (2017). https://doi.org/10.1038/s41524-016-0004-9
- K. Chang, G. G. Lee, and J. Kwon, A phase-field modeling of void swelling in the Austenitic stainless steel, Radiat. Eff. Defects Solids, 171, 242-251 (2016). https://doi.org/10.1080/10420150.2016.1179304
- A. A. Wheele, W. J. Boettinger, and G. B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, 45, 7424-7440 (1992). https://doi.org/10.1103/PhysRevA.45.7424
- S. G. Kim, W. T. Kim, and T. Suzuki, Phase-field model for binary alloys, Phys. Rev. E, 60, 7186-7197 (1999). https://doi.org/10.1103/PhysRevE.60.7186
- S. Hu, D. E. Burkes, C. A. Lavender, D. J. Senor, W. Setyawan, and Z. Xu, Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation, J. Nucl. Mater., 479, 202-215 (2016). https://doi.org/10.1016/j.jnucmat.2016.07.012
-
M. S. Veshchunov, V. D. Ozrin, V. E. Shestak, V. I. Tarasov, R. Dubourg, and G. Nicaise, Development of the mechanistic code MFPR for modelling fission-product release from irradiated
$UO_2$ fuel, Nucl. Eng. Des., 236, 179-200 (2006). https://doi.org/10.1016/j.nucengdes.2005.08.006 - W. Xu, Y. Zhang, G. Cheng, W. Jian, P. C. Millett, C. C. Koch, S. N. Mathaudhu, and Y. Zhu, In-situ atomic-scale observation of irradiation-induced void formation, Nat. Commun., 4, 2288 (2013). https://doi.org/10.1038/ncomms3288