DOI QR코드

DOI QR Code

익모초 에탄올 추출물의 항산화 및 항염증 활성

Anti-oxidant and Anti-inflammatory Effects of Ethanol Extracts from Leonurus japonicus Houtt. on LPS-induced RAW 264.7 Cells

  • 최유나 (전북대학교 농업생명과학대학 농학과) ;
  • 최유경 (전북대학교 농업생명과학대학 작물생명과학과) ;
  • 난리 (전북대학교 농업생명과학대학 작물생명과학과) ;
  • 추병길 (전북대학교 농업생명과학대학 작물생명과학과)
  • 투고 : 2020.10.26
  • 심사 : 2020.11.04
  • 발행 : 2020.11.30

초록

본 실험에서는 익모초 지상부 에탄올 추출물의 항산화 및 항염증 효과를 확인하여 건강 기능성 소재로서의 가능성을 평가하고자 하였다. DPPH 및 ABTS radical 소거 활성, 환원력, 총 폴리페놀 및 플라보노이드 함량을 통해 익모초의 항산화능을 측정한 결과, 400 ㎍/mL, 1500 ㎍/mL의 농도에서 57.8%, 62.3%의 DPPH 및 ABTS radical 소거활성을 보였고 환원력 또한 농도 의존적으로 증가하는 경향을 보였다. 총 폴리페놀 함량 및 플라보노이드 함량은 1 mg/mL의 농도에서 각각 51.40 ± 0.47 mg of gallic acid equivalents/g, 73.28 ± 0.10 mg of rutin equivalents/g로 나타났으며, 익모초 추출물은 세포 내 ROS의 생성 억제에 있어서 유의적인 효과를 보였다. 익모초의 항염증 효과를 측정한 결과, LPS로 자극해 활성화된 RAW 264.7 cell에서 익모초 추출물(0~400 ㎍/mL)의 세포 독성은 없었으며 LPS 처리로 유도된 세포의 형태학적 변화도 농도의존적으로 완화되는 경향을 보였다. NO 발생량은 LPS 처리군과 비교해 익모초 추출물 처리 시 농도 의존적으로 감소하였고, 400 ㎍/mL에서는 90.3%로 NO의 생성이 억제되었다. 염증성 cytokine (TNF-α, IL1-β)의 생성도 유의적으로 감소하였고 NO를 생성하는 염증성 단백질 iNOS의 발현 또한 억제되었으며 이와 같은 염증성 단백질의 전사를 조절하는 NF-κB (NF-κB, IκB-α) 및 MAPK (ERK, p38)의 인산화 및 활성화 또한 익모초 추출물 처리로 인해 억제됨을 확인하였다. 따라서 익모초 추출물은 NF-κB signaling pathway 및 ERK/p38 MAPK cascade pathway의 조절을 통해 염증성 단백질 및 염증인자의 발현을 감소시킨다고 볼 수 있다. 이러한 결과를 토대로 익모초 지상부 에탄올 추출물은 천연 기능성 소재로서 활용될 가능성이 있으며, 본 연구 결과는 익모초의 고부가가치 향상을 위한 기초자료로 도움이 될 것으로 생각된다.

Leonurus japonicus (L. japonicus) Houtt., a biennial plant in the Lamiaceae family is broadly distributed in Asia such as Korea, China, Japan. The aerial part of L. japonicus is used as a traditional medicine to treat uterine disease including dysmenorrhea, amenorrhea, sterility. In this study, we examined the antioxidant and anti-inflammatory effects of L. japonicus ethanol extracts. The antioxidant activity of L. japonicus was measured by total polyphenol and flavonoid content, and DPPH, ABTS scavenging, reducing power activity, and intracellular ROS expression assay. The anti-inflammatory effects were measured by nitric oxide (NO), cytokines (TNF-α and IL-1β) production and inflammatory protein expression in LPS-induced RAW 264.7 cells. Total polyphenol and flavonoid content of L. japonicus were 51.40 ± 0.47 mg of gallic acid equivalents/g and 73.28 ± 0.10 mg of rutin equivalents/g respectively. DPPH, ABTS radical scavenging activity and reducing power activity tended to increase concentration-dependent and treatment L. japonicus with 400 ㎍/mL reduced ROS production by 69.5%. Furthermore, L. japonicus inhibited NO, TNF-α and IL-1β production in a concentration-dependant manner and reduced the expression levels of inflammatory proteins via regulating NF-κB, MAPK pathway. Therefore, we suggest that L. japonicus could be a natural antioxidants and medicinal source to treat oxidative stress and inflammation-related disease.

키워드

과제정보

본 논문은 농촌진흥청 연구사업(세부과제번호: PJ0142272020)의 지원에 의해 이루어진 것임.

참고문헌

  1. Allison, M. C., A. G. Howatson, C. J. Torrance, F. D. Lee, and R. I. Russell. 1992. Gastrointestinal Damage Associated with the Use of Nonsteroidal Antiinflammatory Drugs. N. Engl. J. Med. 327: 1882-1883.
  2. Anand, S. P. and N. Sati. 2013. Artificial Preservatives and Their Harmful Effects: Looking Toward Nature for Safer Alternatives. Int. J. Pharm. Sci. Res. 4: 2496-2501.
  3. Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci. 2012. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5: 9-19.
  4. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199-1200.
  5. Byun, E. B., W. Y. Park, D. H. Ahn, Y. C. Yoo, C. Park, B. S. Jang, W. J. Park, E. H. Byun, and N. Y. Sung. 2016. Comparison study of three varieties of red peppers in terms of total polyphenol, total flavonoid contents, and antioxidant activities. Korean J. Food Sci. Nutr. 45: 765-770.
  6. Chapple, I. L. 1997. Reactive oxygen species and antioxidants in inflammatory diseases. J. Clinl. Periodontol. 24: 278-296.
  7. Cheng, P., T. Wang, W. Li, I. Muhammad, H. Wang, X. Sun, Y. Yang, J. Li, T. Xiao, and X. Zhang. 2017. Baicalin alleviates lipopolysaccharide-induced liver inflammation in chicken by suppressing TLR4-mediated NF-κB pathway. Front Pharmacol. 8: 547.
  8. Das, K. and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2: 53.
  9. Dinarello, C. A. 2010. Anti-inflammatory Agents: Present and Future. Cell. 140: 935-950.
  10. English, J. M. and M. H. Cobb. 2002. Pharmacological inhibitors of MAPK pathways. In Trends Pharmacol. Sci. 23: 40-45.
  11. Ferreira, I. C. F. R., P. Baptista, M. Boas, and L. Barros. 2007. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100: 1511-1516.
  12. Hu, B., H. Zhang, X. Meng, F. Wang, and P. Wang. 2014. Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. J. Ethnopharmacol. 153: 846-853.
  13. Hu, X. D., Y. Yang, X. G. Zhong, X. H. Zhang, Y. N. Zhang, Z. P. Zheng, Y. Zhou, W. Tang, Y. F. Yang, L. H. Hu, and J. P. Zuo. 2008. Anti-inflammatory effects of Z23 on LPS-induced inflammatory responses in RAW264.7 macrophages. J. Ethnopharmacol. 120: 447-151.
  14. Hwang, D., B. C. Jang, G. Yu, and M. Boudreau. 1997. Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide. Biochem. Pharmacol. 54: 87-96.
  15. Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy - From molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. 1754: 253-262.
  16. Kenny, O. M., C. M. McCarthy, N. P. Brunton, M. B. Hossain, D. K. Rai, S. G. Collins, P. W. Jones, A. R. Maguire, and N. M. O'Brien. 2013. Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sci. 92: 775-782.
  17. Kim, J. Y., Y. H. Lee, J. Y. Kim, and R. B. Kyung. 2005. Study of Antioxidation Action of Lenonuri herba Extract. Korean J. Cosmetric Sci, 51: 189-196.
  18. Kiselova, Y., D. Ivanova, T. Chervenkov, D. Gerova, B. Galunska, and T. Yankova. 2006. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytother. Res. 20: 961-965.
  19. Lee, H. S., D. S. Ryu, G. S. Lee, and D. S. Lee. 2012. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: Suppression of NF-κB activation and MAPK signaling. J. Ethnopharmacol. 140: 271-276.
  20. Lee, J., H.-J. Kim, G. Y. Jang, K. H. Seo, M. R. Kim, Y. H. Choi, and J. W. Jung. 2020. Effect of Leonurus japonicus Houtt. on Scopolamine-induced Memory Impairment in Mice. J. Physiol. Pathol. Korean Med. 34: 81-87.
  21. Lee, S., D. Lee, J. Baek, E. B. Jung, J. Y. Baek, I. K. Lee, T. S. Jang, K. S. Kang, and K. H. Kim. 2017. In vitro assessment of selected Korean plants for antioxidant and antiacetylcholinesterase activities. Pharm. Biol. 55: 2205-2210.
  22. Lee, S. G., D. J. Jo, H. J. Chang, and H. Kang. 2015. Antioxidant and Anti-inflammatory Activities of Ethanol Extracts from Aralia continentalis Kitagawa, Korean J. Naturopathy. 4: 10-14.
  23. Marinova, G. and V. Batchvarov. 2011. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulgarian J. Agri. Sci. 17: 11-24.
  24. Moloney, J. N. and T. G. Cotter. 2018. ROS signalling in the biology of cancer. Semin Cell Dev. Biol. 80: 50-64.
  25. Muthusamy, V. and T. J. Piva. 2010. The UV response of the skin: A review of the MAPK, NFκB and TNFα signal transduction pathways. Arch Dermatol. Res. 302: 5-17.
  26. Oliveira, A. S., L. M. Cercato, M. T. de Santana Souza, A. J. O. Melo, B. D. S. Lima, M. C. Duarte, A. A. S. Araujo, A. M. de Oliveira E Silva, and E. A. Camargo. 2017. The ethanol extract of Leonurus sibiricus L. induces antioxidant, antinociceptive and topical anti-inflammatory effects. J. Ethnopharmacol. 206: 144-151.
  27. Pietta, P. G. 2000. Flavonoids as antioxidants. J. Nat. Prod. 63: 1035-1042.
  28. Ravipati, A. S., L. Zhang, S. R. Koyyalamudi, S. C. Jeong, N. Reddy, J. Bartlett, P. T. Smith, K. Shanmugam, G. Munch, M. J. Wu, M. Satyanarayanan, and B. Vysetti. 2012. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern. Med. 12: 173.
  29. Senevirathne, M., S. H. Kim, N. Siriwardhana, J. H. Ha, K. W. Lee, and Y. J. Jeon. 2006. Antioxidant potential of ecklonia cavaon reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Sci. Technol. Int. 12: 27-38.
  30. Shang, X., H. Pan, X. Wang, H. He, and M. Li. 2014. Leonurus japonicus Houtt.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 152: 14-32.
  31. Shin, H. Y., S. H. Kim, S. M. Kang, I. J. Chang, S. Y. Kim, H. Jeon, K. H. Leem, W. H. Park, J. P. Lim, and T. Y. Shin. 2009. Anti-inflammatory activity of Motherwort (Leonurus sibiricus L.). Immunopharmacol. Immunotoxicol. 31: 209-213.
  32. Sudha, G., M. S. Priya, R. I. Shree, and S. Vadivukkarasi. 2011. In vitro free radical scavenging activity of raw pepio fruit (Solanum muricatum aiton). Int. J. Curr. Pharml. Res. 3.
  33. Surh, Y. J., K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park, and S. S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res. 480-481: 243-268.
  34. Urquiaga, I. and F. Leighton. 2000. Plant Polyphenol Antioxidants and Oxidative Stress. Biol. Res. 33: 55-64.
  35. Yu, S. Y., Y. J. Lee, H. S. Song, H. J. Lim, H. S. Choi, B. Y. Lee, S. N. Kang, and O. H. Lee. 2012. Antioxidant Effects and Nitrite Scavenging Ability of Extract from Acanthopanax cortex Shoot. Korean J. Food Nutr. 25: 793-799.
  36. Zhai, Z., A. Solco, L. Wu, E. S. Wurtele, M. L. Kohut, P. A. Murphy, and J. E. Cunnick. 2009. Echinacea increases arginase activity and has anti-inflammatory properties in RAW 264.7 macrophage cells, indicative of alternative macrophage activation. J. Ethnopharmacol. 122: 76-85.