DOI QR코드

DOI QR Code

국내 이스라엘 잉어의 선발육종효과 평가

Assessment Selective Breeding Effect of Israeli carp (Cyprinus carpio) from Korea

  • 김정은 (국립수산과학원 중앙내수면연구소 내수면양식연구센터) ;
  • 황주애 (국립수산과학원 중앙내수면연구소 내수면양식연구센터) ;
  • 김형수 (국립수산과학원 중앙내수면연구소 내수면양식연구센터) ;
  • 임재현 (국립수산과학원 연구기획부 연구협력과) ;
  • 이정호 (국립수산과학원 중앙내수면연구소 내수면양식연구센터)
  • Kim, Jung Eun (Inland Aquaculture Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Hwang, Ju-ae (Inland Aquaculture Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Kim, Hyeong Su (Inland Aquaculture Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Im, Jae Hyun (Research Cooperation Division, National Institute of Fisheries Science (NIFS)) ;
  • Lee, Jeong-Ho (Inland Aquaculture Research Center, National Institute of Fisheries Science (NIFS))
  • 투고 : 2020.10.29
  • 심사 : 2020.12.17
  • 발행 : 2020.12.31

초록

1973년 이스라엘 잉어(향어)가 한국에 양식을 위해 도입된 이후 현재까지 품종개량에 대한 연구가 전무한 실정이다. 본 연구는 지속적인 근친교배로 인해 낮아진 국내 이스라엘 잉어의 유전적 다양성을 회복하고, 성장이 빠르고 비늘 개선을 위해 유전적 기반 교잡육종 연구를 수행하였다. 본 연구는 한국의 이스라엘 잉어의 품종개량을 위하여 국내 이스라엘 잉어와 중국의 송푸거울 잉어를 이용하여 4개의 교배구를 설정하여 F1을 생산하였다. 친어의 형태 및 유전학적 거리를 고려하여 교배지침을 설정하였다. 본 연구는 유전적 다양성과 친자분석을 위하여 microsatellite 마커와 유전형 데이터를 활용하였다. 그 결과, 국내 친어의 평균 대립유전자와 기대이형접합율은 8.3과 0.743이며, F1은 13.0과 0.764이었다. 국내 이스라엘 잉어와 중국 송푸거울 잉어의 품종 간 교배를 통하여 국내 이스라엘 잉어보다 F1의 유전적 다양성이 회복되었음을 나타내었다. 한국의 일반 이스라엘 잉어는 17개월에 1.7 kg이었고, 개량된 이스라엘 잉어는 2.2 kg에 도달하였다. 또한, KC(한국×중국) 교배그룹의 비늘수치는 2.52, 친어그룹의 비늘수치는 3.15로 나타나 F1은 친어보다 낮은 비늘수치(0.63)를 나타내었다. 품종개량된 이스라엘 잉어(F1; CK, KC)는 친어그룹 (F0)보다 비늘이 20% 개선되었으며, 일반 이스라엘 잉어에 비해 체중(27%)과 비늘(25%)이 향상되었다. 유전적 데이터를 기반으로 개발된 이스라엘 잉어는 상업성이 좋아 국내 이스라엘 양식업에 크게 기여할 것으로 생각된다.

Since the introduction of Israeli carp into Korea for farming in 1973, there are no breeding studies on developing Korea Israeli carp (domestic) so far. This study performed gene-based cross-breeding studies to restore genetic diversity of lowered Israeli carp through continuous inbreeding, and for rapid growth and better scales. This study produced four cross-breeding groups (F1) using Koean Israeli carp and Chinese Songpu mirror carp for the improvement of growth and scale of Israeli carp in Korea. And mating scheme for breeding groups was set in consideration of the morphological analysis and genetic distance of broodstock. In addition, this study used microsatellite markers and genotype data to analyze genetic diversity and parentage analysis. As a result, the average NA and HE values of Korean select broodstock are 8.3 and 0.743, and F1 is 13.0 and 0.764. This study shows that the genetic diversity of F1 has been recovered over Korean Israeli carp through breeding between Korean Israeli carp and Chinese Songpu mirror carp. Common Israeli carp in Korea reached 1.7 kg in 17 months, and improved Israeli carp reached to 2.2 kg. The KC (Korea×China, KC) group was 2.52 and broodstock group was 3.15. F1 showed lower scale score (0.63) than broodstock. The improved carp (F1; CK, KC) had 20% better scales than the parent group (F0), which improved 27% in weight and 25% in scales compared to common Israeli carp. The Israeli carp developed by the genetics-based breeding grew quicker and had improved genetic diversity and fewer scales, which will be of great value for Korean Israeli aquaculture industry due to good marketability.

키워드

과제정보

This work was supported by a grant from the National Institute of Fisheries Science (R2020002), Korea. We would like to express our sincere thanks to both Chinese Academy of Fishery Sciences, Heilongjiang River Fisheries Institute and Dr. Lianyu SHI for your active participation and cooperation on proceeding this research.

참고문헌

  1. Albenzio, M. and A. Santillo. 2011. Biochemical characteristics of ewe and goat milk: effect on the quality of dairy products. Small Ruminant Res., 101: 33-40. https://doi.org/10.1016/j.smallrumres.2011.09.023.
  2. Bakos, J. 1995. Genetic improvement of common carp strains using intraspecific hybridization. Aquaculture, 129: 183-186. https://doi.org/10.1016/0044-8486(94)00245-J.
  3. Botstein, D., R.L. White, M. Skolnick and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32: 314-331.
  4. Cavalli-Sforza, L.L. and A.W.F. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. Evolution, 32: 550-570. https://doi.org/10.2307/2406616.
  5. Crooijmans, R.P.M.A., V.A.F. Bierbooms, J. Komen, J.J. VanderPoel and M.A.M. Groenen. 1997. Microsatellite markers in common carp (Cyprinus carpio L). Anim. Genet., 28: 129-134. https://doi.org/10.1111/j.1365-2052.1997.00097.x.
  6. Dong, Z., H. Nguyen and W. Zhu. 2015. Genetic evaluation of a selective breeding program for common carp Cyprinus carpio conducted from 2004 to 2014. BMC Genet., 16: 1-9.
  7. Duncan, D.B. 1955. Multiple-range and multiple F tests. Biometrics, 11: 1-42.
  8. Gjedrem, T. 2012. Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquac, 344-349. https://doi.org/10.1016/j.aquaculture.2012.03.003.
  9. Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at: http://www.unil.ch/izea/softwares/fstat.html.
  10. Heath, D.D., C.W. Fox and J.W. Heath. 1999. Maternal effects on offspring size: variation through early development of chinook salmon. Evolution, 53: 1605-1611. https://doi.org/10.2307/2640906.
  11. Hulak, M., V. Kaspar, K. Kohlmann, K. Coward, J. Tesitel, M. Rodina, D. Gela, K. Martin and O. Linhart. 2010. Microsatellite-based genetic diversity and differentiation of foreign common carp (Cyprinus carpio) strains farmed in the Czech Republic. Aquaculture, 298: 194-201. https://doi.org/10.1016/j.aquaculture.2009.10.021.
  12. Hwang, J.A., I.B. Goo, J.E. Kim, M.H. Kim, D.H. Kim, J.H. Im, H.S. Choi and J.H. Lee. 2016. Growth comparison of Israeli carp (Cyprinus carpio) to different breeding combination. Dev. Reprod., 20: 275-281. https://doi.org/10.12717/DR.2016.20.4.275.
  13. Kalinowski, S.T., M.L. Taper and T.C. Marshal. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x.
  14. Kim, J.E. 2018. Genetic breeding of Israeli carp (Cyprinus carpio) using microsatellite markers. Doctoral Thesis, Kyungsung University, Busan, Korea, 140pp.
  15. Kim, J.E., I.B. Goo, J.A. Hwang, H.S. Kim, H.S. Choi and J.H. Lee. 2018. Genetic variability comparison of cultured Israeli carp (Cyprinus carpio) from Korea using microsatellites. Genes Genom., 40: 653-642.
  16. Kim, J.G. 2016. The study of identifying ecological characteristics and farming conditions for the restoration of mandarin fish stocks. Master Thesis, Gyeongnam National University of science and technology, Jinju, Korea, 77pp.
  17. Kim, M.J., H.S. An, S.W. Hong and J.Y. Park. 2008. Investigation of genetic diversity between wild-caught and hatchery-reared rock bream(Oplegnathus fasciatus) using microsatellite DNA analysis. J. Fish. Sci. Technol., 11: 82-87.
  18. Korea Fisheries News. 2015. Trout, producers need comarketing (2015-4-20). Korean trout farming association.
  19. Li, C.T., Y.Y. Zhang, Z.Y. Jia, X.S. Hu and L.Y. Shi. 2009. Comparative studies on measurable characters and the number of scales in songpu mirror carp and german mirror carp selection strain. Chi. J. Fish., 22: 53-61.
  20. Li, D., D. Kang, Q. Yin, X. Sun and L. Liang. 2007. Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations. J. Genet. Genomics, 34: 984-993. https://doi.org/10.1016/S1673-8527(07)60111-8.
  21. Luo, X.N., M. Yang, X.F. Liang, K. Jin, L.Y. Lv, C.X. Tian, Y.C. Yuan and J. Sun. 2015. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers. Genet Mol Res., 14: 11348-11355.
  22. Martin, K., M. Stephane, R. Marek, G. David, L. Otomar and V. Marc. 2007. Heritability estimates for processing and quality traits in common carp (Cyprinus carpio L.) using a molecular pedigree. Aquaculture, 270: 43-50.
  23. Moav, R. and C. Wohlfarth. 1976. Two-way selection for growth rate in the common carp (Cyprinus carpio L.). Genetics, 82: 83-101.
  24. Mondol, M.R.K., M.S. Islamz and M.S. Alam. 2006. Characterization of different strains of common carp (Cyprinus carpio L.)(Cyprinidae, Cypriniformes) in Bangladesh using microsatellite DNA markers. Genet. Mol. Biol., 29: 626-633.
  25. Oh, M.J., S.J. Jung, T.J. Choi, H.R. Kim, K.V. Rajendran, Y.J. Kim, M.A. Park and S.K. Chun, 2001. A viral disease occurring in cultured carp Cyprinus carpio in Korea. Fish. Pathol., 36: 147-151.
  26. Ortega-Villaizan, M.M., D. Noguchi and N. Taniguchi. 2011. Minimization of genetic diversity loss of endangered fish species captive broodstocks by means of minimal kinship selective crossbreeding. Aquaculture, 318: 239-243. https://doi.org/10.1016/j.aquaculture.2011.04.047.
  27. Rajts, F., T. Huntington and M.G. Hussain. 2002. Carp broodstock management and genetic improvement program under Fourth Fisheries Project. In: Penman, D.J., M.G. Hussain, B.J. Mc Andrew and M.A. Mazid (eds.), Genetic management and improvement of exotic carp species in Bangladesh. B.F.R.I., Mymensingh, Bangladesh, pp. 95-106.
  28. Sin, A.W. 1982. Stock improvement of the common carp in Hong Kong through hybridization with the introduced Israeli race Dor-70. Aquaculture, 29: 299-304. https://doi.org/10.1016/0044-8486(82)90143-0.
  29. Tal, S. and M. Sheluvki. 1952. A review of the fish farming industry in Israel. T. Am. Fish. Soc., 81: 218-223.
  30. Vandeputte, M., K. Martin, M. Stephane, D.N. Mathilde, D.G. Daphne, R. Marek, G. David, V. Dominique, C. Bernard and L. Otomar. 2004. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture, 235: 223-236.
  31. Wohlfarth, G., M. Lahman, G. Hulata and R. Moav. 1980. The story of Dor-70: a selected strain of the Israeli common carp. Isr. J. Aquac. Bamidgeh., 32: 3-5.
  32. Wohlfarth, G.W., R. Moav and G. Hulata. 1983. A genotype-interaction for growth rate in the common carp, growing in intensively manured ponds. Aquaculture, 33: 187-195.
  33. Yashouv, A. 1955. The Punten carp and its attributes. Isr. J. Aquac. Bamidgeh., 7: 46-55.
  34. Yue, G.H. and L. Orban. 2001. Rapid isolation of DNA from fresh and preserved fish scales for polymerase chain reaction. Mar. Biotechnol., 3: 199-204. https://doi.org/10.1007/s10126-001-0010-9.