DOI QR코드

DOI QR Code

An information-theoretical analysis of gene nucleotide sequence structuredness for a selection of aging and cancer-related genes

  • Received : 2020.11.06
  • Accepted : 2020.11.27
  • Published : 2020.12.31

Abstract

We provide an algorithm for the construction and analysis of autocorrelation (information) functions of gene nucleotide sequences. As a measure of correlation between discrete random variables, we use normalized mutual information. The information functions are indicative of the degree of structuredness of gene sequences. We construct the information functions for selected gene sequences. We find a significant difference between information functions of genes of different types. We hypothesize that the features of information functions of gene nucleotide sequences are related to phenotypes of these genes.

Keywords

References

  1. Wong KC. Big data challenges in genome informatics. Biophys Rev 2019;11:51-54. https://doi.org/10.1007/s12551-018-0493-5
  2. Masoller C, Hong Y, Ayad S, Gustave F, Barland S, Pons AJ, et al. Quantifying sudden changes in dynamical systems using symbolic networks. New J Phys 2015;17:023068. https://doi.org/10.1088/1367-2630/17/2/023068
  3. James BT, Luczak BB, Girgis HZ. MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res 2018;46:e83. https://doi.org/10.1093/nar/gky315
  4. Priness I, Maimon O, Ben-Gal I. Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics 2007;8:111. https://doi.org/10.1186/1471-2105-8-111
  5. Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 2012;13:328. https://doi.org/10.1186/1471-2105-13-328
  6. Androulakis IP, Yang E, Almon RR. Analysis of time-series gene expression data: methods, challenges, and opportunities. Annu Rev Biomed Eng 2007;9:205-228. https://doi.org/10.1146/annurev.bioeng.9.060906.151904
  7. Gamow G. Possible mathematical relation between deoxyribonucleic acid and proteins. Biol Meddel Kongel Danske Vidensk Selsk 1954;22:1-13.
  8. Yockey HP, Platzman RL, Quastler H. Symposium on Information Theory in Biology, 1956 Oct 29-31, Gatlinburg, Tennessee. New York: Pergamon Press, 1958.
  9. Gelfand IM. Speech at the meeting of Royal East Research, September 3, 2003. Matematicheskoe Prosveshenie 2004;3:13-14.
  10. Scheffe H. The Analysis of Variance. Hoboken: John Wiley & Sons, 1999.
  11. Blokh D, Stambler I. The application of information theory for the research of aging and aging-related diseases. Prog Neurobiol 2017;157:158-173. https://doi.org/10.1016/j.pneurobio.2016.03.005
  12. Blokh D, Stambler I, Lubart E, Mizrahi EH. An information theory approach for the analysis of individual and combined evaluation parameters of multiple age-related diseases. Entropy 2019;21:572. https://doi.org/10.3390/e21060572
  13. Blokh D, Stambler I, Afrimzon E, Shafran Y, Korech E, Sandbank J, et al. The information-theory analysis of Michaelis-Menten constants for detection of breast cancer. Cancer Detect Prev 2007;31:489-498. https://doi.org/10.1016/j.cdp.2007.10.010
  14. Blokh D, Zurgil N, Stambler I, Afrimzon E, Shafran Y, Korech E, et al. An information-theoretical model for breast cancer detection. Methods Inf Med 2008;47:322-327. https://doi.org/10.3414/ME0440
  15. Blokh D, Stambler I, Afrimzon E, Platkov M, Shafran Y, Korech E, et al. Comparative analysis of cell parameter groups for breast cancer detection. Comput Methods Programs Biomed 2009; 94:239-249. https://doi.org/10.1016/j.cmpb.2009.01.005
  16. Gutierrez Diez PJ, Russo IH, Russo J. The Evolution of the Use of Mathematics in Cancer Research. New York: Springer, 2012.
  17. Vinga S. Information theory applications for biological sequence analysis. Brief Bioinform 2014;15:376-389. https://doi.org/10.1093/bib/bbt068
  18. Roman-Roldan R, Bernaola-Galvan P, Oliver JL. Application of information theory to DNA sequence analysis: a review. Pattern Recognit 1996;29:1187-1194. https://doi.org/10.1016/0031-3203(95)00145-X
  19. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press, 1998.
  20. Li W. Mutual information functions versus correlation functions. J Stat Phys 1990;60:823-837. https://doi.org/10.1007/BF01025996
  21. Atzmon G. Longevity Genes: A Blueprint for Aging. New York: Springer, 2015.
  22. Singh PP, Demmitt BA, Nath RD, Brunet A. The genetics of aging: a vertebrate perspective. Cell 2019;177:200-220. https://doi.org/10.1016/j.cell.2019.02.038
  23. Glantz SA. Primer of Biostatistics. 4th ed. New York: McGraw-Hill, 1994.
  24. Conover WJ. Practical Nonparametric Statistics. New York: Wiley-Interscience, 1999.
  25. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 2011;12:68-78.
  26. Joosse SA. BRCA1 and BRCA2: a common pathway of genome protection but different breast cancer subtypes. Nat Rev Cancer 2012;12:372. https://doi.org/10.1038/nrc3181-c2
  27. Shan YS, Hsu HP, Lai MD, Hung YH, Wang CY, Yen MC, et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett 2017;14:4517-4526. https://doi.org/10.3892/ol.2017.6736
  28. Romagosa C, Simonetti S, Lopez-Vicente L, Mazo A, Lleonart ME, Castellvi J, et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 2011;30:2087-2097. https://doi.org/10.1038/onc.2010.614
  29. Shimizu Y, Luk H, Horio D, Miron P, Griswold M, Iglehart D, et al. BRCA1-IRIS overexpression promotes formation of aggressive breast cancers. PLoS One 2012;7:e34102. https://doi.org/10.1371/journal.pone.0034102
  30. Jin X, Wei Y, Xu F, Zhao M, Dai K, Shen R, et al. SIRT1 promotes formation of breast cancer through modulating Akt activity. J Cancer 2018;9:2012-2023. https://doi.org/10.7150/jca.24275
  31. Ran LK, Chen Y, Zhang ZZ, Tao NN, Ren JH, Zhou L, et al. SIRT6 overexpression potentiates apoptosis evasion in hepatocellular carcinoma via BCL2-associated X protein-dependent apoptotic pathway. Clin Cancer Res 2016;22:3372-3382. https://doi.org/10.1158/1078-0432.CCR-15-1638
  32. Bosch-Presegue L, Vaquero A. The dual role of sirtuins in cancer. Genes Cancer 2011;2:648-662. https://doi.org/10.1177/1947601911417862
  33. Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: a renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2017;121:85-100. https://doi.org/10.1016/j.addr.2017.07.009
  34. Saha S, Mandal P, Ganguly S, Jana D, Ayaz A, Banerjee A, et al. Decreased expression of BRCA2 accelerates sporadic breast cancer progression. Indian J Surg Oncol 2015;6:378-383. https://doi.org/10.1007/s13193-015-0449-1
  35. Gaudette BT, Dwivedi B, Chitta KS, Poulain S, Powell D, Vertino P, et al. Low expression of pro-apoptotic Bcl-2 family proteins sets the apoptotic threshold in Waldenstrom macroglobulinemia. Oncogene 2016;35:479-490. https://doi.org/10.1038/onc.2015.103