DOI QR코드

DOI QR Code

Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of Streptomyces coelicolor A3(2)

  • Ferdous, Nadim (Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University) ;
  • Reza, Mahjerin Nasrin (Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University) ;
  • Emon, Md. Tabassum Hossain (Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University) ;
  • Islam, Md. Shariful (Laboratory of Reproductive and Developmental Biology, Hokkaido University) ;
  • Mohiuddin, A.K.M. (Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University) ;
  • Hossain, Mohammad Uzzal (Bioinformatics Division, National Institute of Biotechnology)
  • Received : 2020.07.22
  • Accepted : 2020.09.17
  • Published : 2020.09.30

Abstract

Streptomyces coelicolor is a gram-positive soil bacterium which is well known for the production of several antibiotics used in various biotechnological applications. But numerous proteins from its genome are considered hypothetical proteins. Therefore, the present study aimed to reveal the functions of a hypothetical protein from the genome of S. coelicolor. Several bioinformatics tools were employed to predict the structure and function of this protein. Sequence similarity was searched through the available bioinformatics databases to find out the homologous protein. The secondary and tertiary structure were predicted and further validated with quality assessment tools. Furthermore, the active site and the interacting proteins were also explored with the utilization of CASTp and STRING server. The hypothetical protein showed the important biological activity having with two functional domain including POD-like_MBL-fold and rhodanese homology domain. The functional annotation exposed that the selected hypothetical protein could show the hydrolase activity. Furthermore, protein-protein interactions of selected hypothetical protein revealed several functional partners those have the significant role for the bacterial survival. At last, the current study depicts that the annotated hypothetical protein is linked with hydrolase activity which might be of great interest to the further research in bacterial genetics.

Keywords

Acknowledgement

We are grateful to the book of Gobeshonay Bioinformatics-1st Part.

References

  1. Hoskisson PA, van Wezel GP. Streptomyces coelicolor. Trends Microbiol 2019;27:468-469. https://doi.org/10.1016/j.tim.2018.12.008
  2. Nodwell JR. Microbe Profile: Streptomyces coelicolor: a burlesque of pigments and phenotypes. Microbiology (Reading) 2019;165:953-955. https://doi.org/10.1099/mic.0.000821
  3. Hahn MY, Bae JB, Park JH, Roe JH. Isolation and characterization of Streptomyces coelicolor RNA polymerase, its sigma, and antisigma factors. Methods Enzymol 2003;370:73-82. https://doi.org/10.1016/S0076-6879(03)70007-X
  4. Chater KF. Recent advances in understanding Streptomyces. F1000Res 2016;5:2795. https://doi.org/10.12688/f1000research.9534.1
  5. Saito A, Miyashita K, Biukovic G, Schrempf H. Characteristics of a Streptomyces coelicolor A3(2) extracellular protein targeting chitin and chitosan. Appl Environ Microbiol 2001;67:1268-1273. https://doi.org/10.1128/AEM.67.3.1268-1273.2001
  6. Hobbs G, Obanye AI, Petty J, Mason JC, Barratt E, Gardner DC, et al. An integrated approach to studying regulation of production of the antibiotic methylenomycin by Streptomyces coelicolor A3(2). J Bacteriol 1992;174:1487-1494. https://doi.org/10.1128/jb.174.5.1487-1494.1992
  7. Charlop-Powers Z, Owen JG, Reddy BV, Ternei MA, Brady SF. Chemical-biogeographic survey of secondary metabolism in soil. Proc Natl Acad Sci U S A 2014;111:3757-3762. https://doi.org/10.1073/pnas.1318021111
  8. Charlop-Powers Z, Owen JG, Reddy BV, Ternei MA, Guimaraes DO, de Frias UA, et al. Global biogeographic sampling of bacterial secondary metabolism. Elife 2015;4:e05048. https://doi.org/10.7554/eLife.05048
  9. Cihak M, Kamenik Z, Smidova K, Bergman N, Benada O, Kofronova O, et al. Secondary metabolites produced during the germination of Streptomyces coelicolor. Front Microbiol 2017;8:2495.29326665 https://doi.org/10.3389/fmicb.2017.02495
  10. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002;417:141-147. https://doi.org/10.1038/417141a
  11. Wolpert M, Gust B, Kammerer B, Heide L. Effects of deletions of mbtH-like genes on clorobiocin biosynthesis in Streptomyces coelicolor. Microbiology (Reading) 2007;153:1413-1423. https://doi.org/10.1099/mic.0.2006/002998-0
  12. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31:365-370. https://doi.org/10.1093/nar/gkg095
  13. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res 2008;36:W5-W9. https://doi.org/10.1093/nar/gkn201
  14. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019;47:W636-W641. https://doi.org/10.1093/nar/gkz268
  15. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008;36:W465-W469. https://doi.org/10.1093/nar/gkn180
  16. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003;31:3784-3788. https://doi.org/10.1093/nar/gkg563
  17. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006;64:643-651. https://doi.org/10.1002/prot.21018
  18. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608-1615. https://doi.org/10.1093/bioinformatics/btq249
  19. Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522-2524. https://doi.org/10.1093/bioinformatics/bti309
  20. Imai K, Asakawa N, Tsuji T, Akazawa F, Ino A, Sonoyama M, et al. SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation 2008;2:417-421. https://doi.org/10.6026/97320630002417
  21. Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 2001;17:646-653. https://doi.org/10.1093/bioinformatics/17.7.646
  22. Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001;17:849-850. https://doi.org/10.1093/bioinformatics/17.9.849
  23. Dobson L, Remenyi I, Tusnady GE. CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res 2015;43:W408-W412. https://doi.org/10.1093/nar/gkv451
  24. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, et al. CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 2005;33:D192-D196.
  25. Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res 2002;30:42-46. https://doi.org/10.1093/nar/30.1.42
  26. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res 2014;42:D222-D230. https://doi.org/10.1093/nar/gkt1223
  27. Wilson D, Madera M, Vogel C, Chothia C, Gough J. The SUPER-FAMILY database in 2007: families and functions. Nucleic Acids Res 2007;35:D308-D313. https://doi.org/10.1093/nar/gkl910
  28. Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science 1991;252:1162-1164. https://doi.org/10.1126/science.252.5009.1162
  29. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. InterPro: the integrative protein signature database. Nucleic Acids Res 2009;37:D211-D215. https://doi.org/10.1093/nar/gkn785
  30. Shen HB, Chou KC. Predicting protein fold pattern with functional domain and sequential evolution information. J Theor Biol 2009;256:441-446. https://doi.org/10.1016/j.jtbi.2008.10.007
  31. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015;43:D447-D452. https://doi.org/10.1093/nar/gku1003
  32. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000;16:404-405. https://doi.org/10.1093/bioinformatics/16.4.404
  33. Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995;11:681-684.
  34. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018;430:2237-2243. https://doi.org/10.1016/j.jmb.2017.12.007
  35. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 2009;77 Suppl 9:114-122. https://doi.org/10.1002/prot.22570
  36. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283-291. https://doi.org/10.1107/S0021889892009944
  37. Eisenberg D, Luthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 1997;277:396-404. https://doi.org/10.1016/S0076-6879(97)77022-8
  38. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993;2:1511-1519. https://doi.org/10.1002/pro.5560020916
  39. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 2006;34:W116-W118. https://doi.org/10.1093/nar/gkl282
  40. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2