DOI QR코드

DOI QR Code

Advanced and Application of Onsite EEW Technology in Korea

국내에서의 지진현장경보 기술 고도화 및 적용

  • Received : 2020.07.31
  • Accepted : 2020.10.23
  • Published : 2020.12.31

Abstract

Purpose: This study aims to derive a PGV prediction equation and to enhance the application of the Onsite EEW technology which has developed through previous studies. Method: The prediction equation for the Onsite EEW derived from earthquake data M≥3.0 and MMI≥II over the past four years. Local seismic risk is estimated using M and PGV deduced from P wave properties. Result: The improved PGV prediction equation estimated the MMI with an average accuracy of 94.8% and the 𝜏c : Pd method also showed valid performance for alerting local seismic risks. Conclusion: Onsite EEW technology is successfully applied to Korea, and becomes to reduce the blind zone to about 14km.

연구목적: 본 연구는 기존 지진현장경보 연구를 통해 단일 지진계에서 관측한 P파로부터 PGV 값을 예측하기 위한 예측식을 제시하고, 예측 결과를 현장경보에 이용하기 위한 기술적 접근 방안들을 도출하기 위한 것이다. 연구방법: 과거 4년간 규모 3,0 이상의 지진가운데 진도등급 II 이상의 데이터를 이용하여 P파로부터 PGV를 예측하기 위한 수식을 도출하고, 진원 정보 추정 없이 지진의 규모와 PGV의 크기를 상대적으로 비교하여 지진위험을 알려줄 수 있는 기술을 적용하였다. 연구결과: 개선한 PGV 예측식은 평균 94.8%의 정확도로 MMI를 추정하였고, 𝜏c : Pd 방법 역시 로컬 지진위험을 경보하기 위한 유효한 성과를 보여주었다. 결론: 현장경보기술을 국내에 성공적으로 적용하였으며, 경보공백역을 약 14km 까지 줄일 수 있는 방안을 제시하였다.

Keywords

Acknowledgement

본 연구는 한국기상산업기술원 기상지진 See-At기술개발사업의 연구비 지원(KMI2018-02210)에 의해 수행되었으며 지원에 감사드립니다.

References

  1. Caruso, A., Colombelli, S., Elia L., Picozzi M., Zollo A. (2017). "An on-site alert level early warning system for Italy." Journal of Geophysical Research: Solid Earth, Vol. 122, pp. 2106-2118, doi:10.1002/2016JB013403.
  2. Colombelli, S., Caruso, A., Zollo, A., Festa, G., Kanamori, H. (2015). "A P wave-based, on-site method for earthquake early warning." Geophysical Research Letters, Vol. 42, No. 5, pp. 1390-1398. https://doi.org/10.1002/2014GL063002
  3. Hwang, E.H. (2018). "Analytical performance and realtime operation result of earthquake early warning system in Korea." Proceeding of International Seminar on Earthquake Policy Development, pp.229-241.
  4. Jennifer, A.S., Richard, M.A. (2016). "Benefits and costs of earthquake early warning." Seismological Research Letters, Vol. 87, No. 3, pp.765-772, doi: 10.1785/0220150149.
  5. Kanamori, H. (2005). "Real-time seismology and earthquake damage mitigation." Annual Review of Earth and Planetary Sciences, Vol. 33, pp. 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
  6. Lee, H.J., Jeon, I., Seo, J.B., Lee, J.K. (2018). "Application of the onsite earthquake early warning technology using the seismic P-wave in Korea." Journal of the Society of Disaster Information, Vol. 14, No. 4, pp. 440-449. doi: 10.15683/kosdi.2018.12.31.440.
  7. Lee, H.J., Jeon, I, Seo, J.B., Lee, J.K. (2020). "Application of the onsite EEW technology using the P-wave of seismic records in Korea." Journal of the Society of Disaster Information, Vol. 16, No. 1, pp. 133-143, doi: 10.15683/kosdi.2020.3.31.133.
  8. Lin, P.-Y. (2019). "A successful approach to earthquake early warning systems." Impact, Vol. 2019, No. 9, pp. 18-20. https://doi.org/10.21820/23987073.2019.9.18
  9. Lomax, A., Satriano, C., Vassallo, M. (2012). "Automatic picker developments and optimization: Filterpicker - a robust, broadband picker for real - time seismic monitoring and earthquake early warning." Seismological Research Letters, Vol. 83, No. 3, pp. 531-540, doi: 10.1785/gssrl.83.3.531.
  10. Meguro, K., Fujinawa, Y. (2007). Earthquake Early Warning. Todai Seisan Gijutu Institute, Japan.
  11. Ministry of Public Safety and Security (2017). Common Application of Seismic Design Standards, Korea.
  12. Ross, Z.E., Meier, M.A., Hauksson, E., Heaton, T.H. (2018). "Generalized seismic phase detection with deep learning." Bulletin of the Seismological Society of America, Vol. 108, No. 5A, pp. 2894-2901. https://doi.org/10.1785/0120180080
  13. Seo, J.B. (2020). "Status and prospects of onsite earthquake early warning using machine learning." Information & Communications Magazine, Vol. 37, No. 4, pp. 46-53.
  14. Wu, B.R., Hsiao, N.C., Lin, P.Y., Hsu, T.Y., Chen, C.Y., Huang, S.K., Chiang, H.W. (2017). "An integrated earth-quake early warning system and its performance at schools in Taiwan" Journal of Seismology, Vol. 21, pp. 165-180, doi: 10.1007/s10950-016-9595-3.
  15. Wu, Y.M., Kanamori, H. (2005). "Experiment on an onsite early warning method for the Taiwan early warning system." Bulletin of the Seismological Society of America, Vol. 95, No. 1, pp. 347-353. https://doi.org/10.1785/0120040097
  16. Wu, Y.M., Kanamori, H. (2008). "Development of an earthquake early warning system using real-time strong motion signals." Sensors, Vol. 8, pp.1-9.
  17. Wu, Y.M., Shieh, J.T., Huang, W.T., Zhao, W.A. (2008). Development of earthquake early warning system using initial P waves (II), Department of Geosciences, National Taiwan University, RG9902-0123, Central Weather Bureau, Taiwan.
  18. Youn, S.M. (2020). "The impact of the government's earthquake disaster response capabilities and the legal and institutional appropriateness of the disaster management system on the operational performance of disaster management : Focused on fire officer's consciousness." Journal of the Society of Disaster Information, Vol.16, No. 2, pp. 318-330. https://doi.org/10.15683/KOSDI.2020.06.30.318
  19. Zhu, W., Beroza, G.C. (2019). "Phasenet: A deep-neural-network-based seismic arrival-time picking method." Geophysical Journal International, Vol. 216, No. 1, pp. 261-273.