References
- Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, The Journal of Finance, 23, 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
- Bae, C. Y., Kang, Y. G., Kim, S., et al. (2008). Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters, Archives of Gerontology and Geriatrics, 47, 253-265. https://doi.org/10.1016/j.archger.2007.08.009
- Choi, J., Jang, J., An, Y., and Park, S. K. (2018). Blood pressure and the risk of death from noncardiovascular diseases: a population-based cohort study of Korean adults, Journal of Preventive Medicine and Public Health, 51, 298-309. https://doi.org/10.3961/jpmph.18.212
- Durand, D. (1941). Risk Elements in Consumer Installment Financing (Technical Ed), National Bureau of Economic Research, New York.
- Evans, M., Roberts, A., Davies, S., and Rees, A. (2004). Medical lipid-regulating therapy, Drugs, 64, 1181-1196. https://doi.org/10.2165/00003495-200464110-00003
- Finlay, S. (2012). Credit Scoring, Response Modeling, and Insurance Rating: A Practical Guide to Forecasting Consumer Behavior, Palgrave Macmillan, New York.
- Furukawa, T., Inoue, M., Kajiya, F., Inada, H., Takasugi, S., Fukui, S., Takeda, H. and Abe, H. (1975). Assessment of biological age by multiple regression analysis, Journal of Gerontology, 30, 422-434. https://doi.org/10.1093/geronj/30.4.422
- Goggins, W. B., Woo, J., Sham, A., and Ho, S. C. (2005). Frailty index as a measure of biological age in a Chinese population, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60, 1046-1051. https://doi.org/10.1093/gerona/60.8.1046
- Hamer, M. M. (1983). Failure prediction: sensitivity of classification accuracy to alternative statistical methods and variable sets, Journal of Accounting and Public Policy, 2, 289-307. https://doi.org/10.1016/0278-4254(83)90032-7
- Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve, Machine learning, 77, 103-123. https://doi.org/10.1007/s10994-009-5119-5
- Hernaez, R., Yeh, H. C., Lazo, M., Chung, H. M., Hamilton, J. P., Koteish, A., Potter, J. J., Brancati, F. L., and Clark, J. M. (2013). Elevated ALT and GGT predict all-cause mortality and hepatocellular carcinoma in Taiwanese male: a case-cohort study, Hepatology international, 7, 1040-1049. https://doi.org/10.1007/s12072-013-9476-6
- Hong, C. S. and Park, Y. S. (2005). Efficiency comparison of statistical credit evaluation models, Research Institute of Applied Statistics Sungkyunkwan University, 13, 93-107.
- Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., and Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study, Decision Support Systems, 37, 543-558. https://doi.org/10.1016/S0167-9236(03)00086-1
- Irie, F., Iso, H., Sairenchi, T., et al. (2006). The relationships of proteinuria, serum creatinine, glomerular filtration rate with cardiovascular disease mortality in Japanese general population, Kidney International, 69, 1264-1271. https://doi.org/10.1038/sj.ki.5000284
- Jeon, H. G., Won, J. Y., Peng, X., and Lee, K. C. (2019). Investigating effects of emotional states on the glucose control of diabetes in Korean adults, Journal of Digital Convergence, 17, 301-311. https://doi.org/10.14400/JDC.2019.17.1.301
- Jeon, W. J. and Seo, Y. W. (2018). Analysis of important indicators of TCB using GBM, Journal of Society for e-Business Studies, 22, 159-173. https://doi.org/10.7838/jsebs.2017.22.4.159
- Kang, Y. G., Suh, E., Lee, J. W., Kim, D. W., Cho, K. H., and Bae, C. Y. (2018). Biological age as a health index for mortality and major age-related disease incidence in Koreans: National Health Insurance Service - Health Screening 11-year follow-up study, Clinical Interventions in Aging, 13, 429-436. https://doi.org/10.2147/CIA.S157014
- Katzmarzyk, P. T., Reeder, B. A., Elliott, S., Joffres, M. R., Pahwa, P., Raine, K. D., Kirkland S. A., and Paradis, G. (2012). Body mass index and risk of cardiovascular disease, cancer and all-cause mortality, Canadian Journal of Public Health, 103, 147-151. https://doi.org/10.1007/BF03404221
- Kim, J. Y., Jang, W. J., and Gim, G. Y. (2019). Development of a personal credit scoring model (COMMERCE Score) using on-line commerce data, Journal of Information Technology and Architecture, 16, 45-55. https://doi.org/10.22865/JITA.2019.16.1.45
- Klemera, P. and Doubal, S. (2006). A new approach to the concept and computation of biological age, Mechanisms of Ageing and Development, 127, 240-248. https://doi.org/10.1016/j.mad.2005.10.004
- Lee, J. Y., Kim, K. H., and Lee, J. S. (2013). Construction of Sample Database from National Health Information Database. Seminar on Application of National Health Information Bigdata.
- Martin, M. J., Browner, W. S., Hulley, S. B., Kuller, L. H., and Wentworth, D. (1986). Serum cholesterol, blood pressure, and mortality: implications from a cohort of 361,662 men, The Lancet, 2(8513), 933-936.
- Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy, Journal of Accounting Research, 18, 109-131. https://doi.org/10.2307/2490395
- Park, C. S. and Kim, M. S. (2011). Credit evaluation model for medical venture business by the analytic hierarchy process, Asia-Pacific Journal of Business Venturing and Entrepreneurship, 6, 133-147.
- Park, J., Cho, B., Kwon, H., and Lee, C. (2009). Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men, Archives of Gerontology and Geriatrics, 49, 7-12. https://doi.org/10.1016/j.archger.2008.04.003
- Pierleoni, P., Belli, A., Concetti, R., Palma, L., Pinti, F., Raggiunto, S., Sabbatini, L., Valenti, S., and Monteriu, A. (2019). Biological age estimation using an eHealth system based on wearable sensors, Journal of Ambient Intelligence and Humanized Computing, 1-12.
- Stocks, T., Van Hemelrijck, M. V., Manjer, J., et al. (2012). Blood pressure and risk of cancer incidence and mortality in the Metabolic Syndrome and Cancer Project, Hypertension, 59, 802-810. https://doi.org/10.1161/HYPERTENSIONAHA.111.189258
- Wilson, P. W., Abbott, R. D., and Castelli, W. P. (1988). High density lipoprotein cholesterol and mortality. The Framingham Heart Study, Arteriosclerosis, 8, 737-741. https://doi.org/10.1161/01.ATV.8.6.737
- Woo, H. S., Lee, S. H., and Cho, H. J. (2013). Building credit scoring models with various types of target variables, Journal of the Korean Data and Information Science Society, 24, 85-94. https://doi.org/10.7465/jkdi.2013.24.1.85
- Yi, S. W., Park, S., Lee, Y. H., Park, H. J., Balkau, B., and Yi, J. J. (2017). Association between fasting glucose and all-cause mortality according to sex and age: a prospective cohort study, Scientific Reports, 7, 1-9. https://doi.org/10.1038/s41598-016-0028-x
- Yoo, J., Kim, Y., Cho, E. R., and Jee, S. H. (2017). Biological age as a useful index to predict seventeen-year survival and mortality in Koreans, BMC Geriatrics, 17, 7. https://doi.org/10.1186/s12877-016-0407-y