참고문헌
- Chan PS, Ng HKT, and Su F (2015). Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring, Metrika, 78, 747-770. https://doi.org/10.1007/s00184-014-0525-5
- Chandrasekar B, Childs A, and Balakrishnan N (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring, Naval Research Logistics (NRL), 51, 994-1004. https://doi.org/10.1002/nav.20038
- Childs A, Balakrishnan N, and Chandrasekar B (2012). Exact distribution of the MLEs of the parameters and of the quantiles of two-parameter exponential distribution under hybrid censoring, Statistics, 46, 441-458. https://doi.org/10.1080/02331888.2010.538476
- Childs A, Chandrasekar B, Balakrishnan N, and Kundu D (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55, 319-330. https://doi.org/10.1007/BF02530502
- Cho YS, Sun HK, and Lee KJ (2015). Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme, Statistical Methodology, 23, 18-34. https://doi.org/10.1016/j.stamet.2014.09.002
- Epstein B (1954). Truncated life tests in the exponential case, The Annals of Mathematical Statistics, 25, 555-564. https://doi.org/10.1214/aoms/1177728723
- Ganguly A, Mitra S, Samanta D, and Kundu D (2012). Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring, Journal of Statistical Planning and Inference, 142, 613-625. https://doi.org/10.1016/j.jspi.2011.08.001
- Kang SB, Cho YS, Han JT, and Kim J (2012). An estimation of the entropy for a double exponential distribution based on multiply Type-II censored samples, Entropy, 14, 161-173. https://doi.org/10.3390/e14020161
- Kang SB and Park SM (2005). Estimation for the exponentiated exponential distribution based on multiply Type-II censored samples, Communications for Statistical Applications and Methods, 12, 643-652. https://doi.org/10.5351/CKSS.2005.12.3.643
- Kang SB, Seo JI, and Kim YK (2013). Estimation for two-parameter generalized exponential distribution based on records, Communications for Statistical Applications and Methods, 20, 29-39. https://doi.org/10.5351/CSAM.2013.20.1.029
- Lee WH and Lee KJ (2018). Estimating the parameter of an exponential distribution under multiply Type-II hybrid censoring, Journal of the Korean Data and Information Science Society, 29, 807-814. https://doi.org/10.7465/jkdi.2018.29.3.807
- Lindley DV (1980). Approximate Bayesian methods, Trabajos de estadistica y de investigacion operativa, 31, 223-245. https://doi.org/10.1007/BF02888353
- Saracoglu B, Kinaci I, and Kundu D (2012). On estimation of R = P(Y < X) for exponential distribution under progressive Type-II censoring, Journal of Statistical Computation and Simulation, 82, 729-744. https://doi.org/10.1080/00949655.2010.551772
- Singh U and Kumar A (2007). Bayesian estimation of the exponential parameter under a multiply Type-II censoring scheme, Austrian Journal of Statistics, 36, 227-238.
- Tierney L and Kadane JB (1986). Accurate approximations for posterior moments and marginal densities, Journal of the American Statistical Association, 81, 82-86. https://doi.org/10.1080/01621459.1986.10478240
- Wang L and Li H (2019). Inference for exponential competing risks data under generalized progressive hybrid censoring, Communications in Statistics-Simulation and Computation, 1-17.
- Xia ZP, Yu JY, Cheng LD, Liu LF, and Wang WM (2009). Study on the breaking strength of jute fibres using modified Weibull distribution, Composites Part A: Applied Science and Manufacturing, 40, 54-59. https://doi.org/10.1016/j.compositesa.2008.10.001