References
- M. Pazianotto, et al., Extensive air shower Monte Carlo modeling at the ground and aircraft flight altitude in the South Atlantic Magnetic Anomaly and comparison with neutron measurements, Astropart. Phys. 88 (2017) 17-29. https://doi.org/10.1016/j.astropartphys.2016.12.004
- P. Paschalis, et al., Geant4 software application for the simulation of cosmic ray showers in the Earth's atmosphere, New Astron. 33 (2014) 26-37. https://doi.org/10.1016/j.newast.2014.04.009
- S. Roesler, W. Heinrich, H. Schraube, Monte Carlo calculation of the radiation field a aircraft altitudes, Radiat. Prot. Dosim. 98 (4) (2002) 367-388. https://doi.org/10.1093/oxfordjournals.rpd.a006728
- A. Ferrari, M. Pelliccioni, T. Rancati, Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure, Radiat. Prot. Dosim. 93 (2) (2001) 101-114. https://doi.org/10.1093/oxfordjournals.rpd.a006418
- S. El-Jaby, R.B. Richardson, Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit, Life Sci. Space Res. 6 (2015) 1-9. https://doi.org/10.1016/j.lssr.2015.05.001
- M. Pazianotto, et al., Analysis of the angular distribution of cosmic-rayinduced particles in the atmosphere based on Monte Carlo simulations including the influence of the Earth's magnetic field, Astropart. Phys. 97 (2018) 106-117. https://doi.org/10.1016/j.astropartphys.2017.11.001
- E. Normand, T. Baker, Altitude and latitude variations in avionics SEU and atmospheric neutron flux, IEEE Trans. Nucl. Sci. 40 (6) (1993) 1484-1490. https://doi.org/10.1109/23.273514
- C. Dyer, et al., Solar particle enhancements of single-event effect rates at aircraft altitudes, IEEE Trans. Nucl. Sci. 50 (6) (2003) 2038-2045. https://doi.org/10.1109/TNS.2003.821375
- E. Normand, Single-event effects in avionics, IEEE Trans. Nucl. Sci. 43 (2) (1996) 461-474. https://doi.org/10.1109/23.490893
- R.A. Weller, et al., Monte Carlo simulation of single event effects, IEEE Trans. Nucl. Sci. 57 (4) (2010) 1726-1746. https://doi.org/10.1109/TNS.2010.2044807
- A.B. Boruzdina, et al., Microdose effects in SRAM cells under heavy ion irradiation, in: 2017 17th European Conference on Radiation and its Effects on Components and Systems (Radecs), 2017, pp. 482-484.
- A. Haran, et al., Single event hard errors in SRAM under heavy ion irradiation, IEEE Trans. Nucl. Sci. 61 (5) (2014) 2702-2710. https://doi.org/10.1109/TNS.2014.2345697
- J. Han, G. Guo, Characteristics of energy deposition from 1-1000 MeV proton and neutron induced nuclear reactions in silicon, AIP Adv. 7 (11) (2017) 115220. https://doi.org/10.1063/1.4995529
- A. Akkerman, J. Barak, Y. Lifshitz, Nuclear models for proton induced upsets: a critical comparison, in: RADECS 2001. 2001 6th European Conference on Radiation and its Effects on Components and Systems (Cat. No. 01TH8605), IEEE, 2001.
- S. Serre, et al., Geant4 analysis of n-Si nuclear reactions from different sources of neutrons and its implication on soft-error rate, IEEE Trans. Nucl. Sci. 59 (4) (2012) 714-722. https://doi.org/10.1109/TNS.2012.2189018
- C. Inguimbert, et al., Using subthreshold heavy ion upset cross section to calculate proton sensitivity, IEEE Trans. Nucl. Sci. 54 (6) (2007) 2394-2399. https://doi.org/10.1109/TNS.2007.909983
- R. Lucas, et al., Lightweight Unit Load Device, Google Patents, 2011.
- E. Aguayo, et al., Cosmic Ray Interactions in Shielding Materials. PNNL-20693, 2011.
- D. Chichester, B. Blackburn, Radiation fields from neutron generators shielded with different materials, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 261 (1-2) (2007) 845-849. https://doi.org/10.1016/j.nimb.2007.04.222
- C.J. Werner, MCNP Users Manual-Code Version 6.2, Los Alamos National Laboratory, 2017.
- J. Goorley, et al., MCNP6. 1.1-Beta Release Notes (LA-UR-14-24680), Los Alamos National Laboratory, Los Alamos, NM, USA, 2014.
- G.E. McMath, G.W. McKinney, T. Wilcox, MCNP6 Cosmic & Terrestrial Background Particle Fluxes-Release 4, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2015.
- G.W. McKinney, et al., MCNP6 Cosmic-Source Option, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2012.
- M.T. Pazianotto, et al., Influence of clouds on the cosmic radiation dose rate on aircraft, Radiat. Prot. Dosim. 161 (1-4) (2014) 279-283. https://doi.org/10.1093/rpd/ncu186
- A. Prado, et al., Investigation of the influence of the position inside a small aircraft on the cosmic-radiation-induced dose, Radiat. Prot. Dosim. 176 (3) (2017) 217-225.
- R.J. McConn, et al., Compendium of Material Composition Data for Radiation Transport Modeling, Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2011.
Cited by
- Numerical estimation of errors in drop angle during drop tests of IP-Type metallic transport containers for radioactive materials vol.53, pp.6, 2021, https://doi.org/10.1016/j.net.2020.12.022