참고문헌
- H. Park and M. Lim, "Design of High Power Density and High Efficiency Wound-Field Synchronous Motor for Electric Vehicle Traction," IEEE Access, vol. 7, pp. 46677-46685, 2019. https://doi.org/10.1109/ACCESS.2019.2907800
- S. Hwang, J. Sim, J. Hong, and J. Lee, "Torque Improvement of Wound Field Synchronous Motor for Electric Vehicle by PM-Assist," IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3252-3259, 2018. https://doi.org/10.1109/tia.2018.2822623
- W. Chai, W. Zhao, and B. Kwon, "Optimal Design of Wound Field Synchronous Reluctance Machines to Improve Torque by Increasing the Saliency Ratio," IEEE Trans. Magn., vol. 53, no. 11, pp. 1-4, 2017. https://doi.org/10.1109/TMAG.2018.2792846
- Q. Ali, T. A. Lipo, and B. Kwon, "Design and Analysis of a Novel Brushless Wound Rotor Synchronous Machine," IEEE Trans. Magn., vol. 51, no. 11, pp. 1-4, 2015.
- M. Lim and J. Hong, "Design of High Efficiency Wound Field Synchronous Machine With Winding Connection Change Method," IEEE Trans. Energy Conv., vol. 33, no. 4, pp. 1978-1987, 2018. https://doi.org/10.1109/TEC.2018.2847728
- G. Snitchler, B. Gamble, and S. S. Kalsi, "The performance of a 5 MW high temperature superconductor ship propulsion motor," IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 2206-2209, 2005. https://doi.org/10.1109/TASC.2005.849613
- K. S. Haran, S. Kalsi, T. Arndt, H. Karmaker, R. Badcock, B. Buckley, T. Haugan, M. Izumi, D. Loder, and J. W. Bray, "High power density superconducting rotating machines-Development status and technology roadmap," Supercond. Sci. Technol., vol. 30, no. 12, p. 123002, 2017. https://doi.org/10.1088/0953-2048/30/12/123002
- U. Bong, S. An, J. Voccio, J. Kim, J. T. Lee, J. Lee, K. J. Han, H. Lee, and S. Hahn, "A Design Study on 40 MW Synchronous Motor With No-Insulation HTS Field Winding," IEEE Trans. Appl. Supercond., vol. 29, no. 5, pp. 1-6, 2019.
- K. Umemoto, K. Aizawa, M. Yokoyama, K. Yoshikawa, Y. Kimura, M. Izumi, K. Ohashi, M. Numano, K. Okumura, and M. Yamaguchi, "Development of 1 MW-class HTS motor for podded ship propulsion system," Proc. J. Phys. Conf. Ser., vol. 234, no. 3. p. 032060, 2010. https://doi.org/10.1088/1742-6596/234/3/032060
- S. Fukui, T. Kawai, M. Takahashi, J. Ogawa, T. Oka, T. Sato, and O. Tsukamoto, "Numerical study of optimization design of high temperature superconducting field winding in 20 MW synchronous motor for ship propulsion," IEEE Trans. Appl. Supercond., vol. 22, no. 3, pp. 5200504-5200504, 2012. https://doi.org/10.1109/TASC.2012.2183331
- H. Moon, Y. Kim, H. Park, M. Park and I. Yu, "Development of a MW-Class 2G HTS Ship Propulsion Motor," IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1-5, 2016.
- H. Moon, Y. C. Kim, H. J. Park, I. K. Yu, and M Park, "An introduction to the design and fabrication progress of a megawatt class 2G HTS motor for the ship propulsion application," Supercond. Sci. and Technol., vol. 29, no. 3, 2016.
- S. S. Kalsi, B. B. Gamble, G. Snitchler and S. O. Ige, "The status of HTS ship propulsion motor developments," Proc. 2006 IEEE PES, Montreal, Que., pp. 1-5, 2006.
- M. Iwakuma, A. Tomioka, M. Konno, Y. Hase, T. Satou, Y. Iijima, T. Saitoh, Y. Yamada, T. Izumi, and Y. Shiohara, "Development of a 15 kW Motor With a Fixed YBCO Superconducting Field Winding," IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 1607-1610, 2007. https://doi.org/10.1109/TASC.2007.898480
- J. H. Kim, C. J. Hyeon, H. L. Quach, S. H. Chae, J. Lee, H. Jeon, S. Han, T. K. Ko, Y. S. Yoon, H. W. Kim, Y. S. Jo, and H. M. Kim, "Characteristic Analysis of a 1-kW-Class HTS Motor Considering Armature Current Information," IEEE Trans. Appl. Supercond., vol. 28, no. 4, pp. 1-5, 2018.
- D. Hu, J. Zou, T. J. Flack, X. Xu, H. Feng, and M. D. Ainslie, "Analysis of fields in an air-cored superconducting synchronous motor with an HTS racetrack field winding," arXiv preprint arXiv:1305.3815, 2013.
- J. Pyrhonen, Tapan Jokinen, Valeria Hrabovcova, Design of Rotating Electrical Machines 2nd ed., Wiley, 2013.
- C. Senatore, C. Barth, M. Bonura, M. Kulich and G. Mondonico, "Field and temperature scaling of the critical current density in commercial REBCO coated conductors," Supercond. Sci. Technol., vol. 29, no. 1, p. 014002, 2015. https://doi.org/10.1088/0953-2048/29/1/014002
- S. Wimbush and N. Strickland. (2017) Critical current characterization of SuNAM SAN04200 2G HTS wire. [Online]. Available: https://doi.org/10.6084/m9.figshare.5182354.v1
- D. K. Hilton, A. V. Gavrilin, and U. P. Trociewitz, "Practical fit functions for transport critical current versus field magnitude and angle data from (RE) BCO coated conductors at fixed low temperatures and in high magnetic fields," Supercond. Sci. Technol., vol. 28, no. 7, p. 074002, 2015. https://doi.org/10.1088/0953-2048/28/7/074002
- M. L. Bash and S. D. Pekarek, "Modeling of Salient-Pole Wound-Rotor Synchronous Machines for Population-Based Design," IEEE Trans. Energy Conv., vol. 26, no. 2, pp. 381-392, 2011. https://doi.org/10.1109/TEC.2011.2105874
- R. Islam, I. Husain, A. Fardoun and K. McLaughlin, "Permanent Magnet Synchronous Motor Magnet Designs with Skewing for Torque Ripple and Cogging Torque Reduction," Proc. 2007 IEEE IAS, New Orleans, LA, pp. 1552-1559, 2007.