DOI QR코드

DOI QR Code

LES Analysis on Combustion Characteristics of a Hydrogen/Methane Gas Turbine Combustor

LES 기법을 이용한 수소/메탄 가스터빈 연소기의 연소특성 분석

  • Nam, Jaehyun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Younghun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.03.11
  • Accepted : 2020.06.26
  • Published : 2020.08.01

Abstract

Large eddy simulation (LES) of a partially premixed gas turbine combustor is conducted. Four different hydrogen compositions are considered to investigate the fuel composition effects on the flow field inside the combustor. The comparison with the experimental flame structure and velocity profile is conducted to verify the LES results, revealing that the partially premixed flame structure is altered when hydrogen composition is changed. The flame structure becomes shorter and thicker as the hydrogen composition is increased, and therefore, the flame effect in the rigid wall is minimized. The change in the recirculation zone at the combustor wall with hydrogen addition is further investigated. Overall, the LES with combustion model is quite promising for accurately predicting the reactive flow characteristics in connection with the fuel composition.

본 연구에서는 부분예혼합 가스터빈 연소기에 대한 대와류모사(LES)가 이루어졌다. 연료 조성에 따른 연소기 내의 유동특성 연구를 위하여 서로 다른 4개의 수소 조성이 고려되었다. 시뮬레이션 결과의 적절성을 확인하기 위해서 화염 구조 및 속도장에 대한 실험결과와의 비교가 선행되었다. 해석 결과에 따르면 연소기 내의 부분예혼합 화염구조가 수소 조성에 크게 영향을 받음이 나타났다. 연료 내 수소 조성이 증가함에 따라 화염구조는 짧고 굵게 형성이 되었으며, 이에 따라 벽면에 미치는 영향이 감소하였다. 수소 조성에 따른 연소기 벽면의 재순환 영역의 변화가 이어서 조사되었으며 연료 조성의 영향이 논의되었다. 종합해 보았을 때, LES 기법과 연소모델을 사용한 수치해석이 연료 조성에 따른 반응성 유동장을 정확하게 예측할 수 있음이 확인되었다.

Keywords

References

  1. Bell, S. R. and Gupta, M., "Extension of the Lean Operating Limit for Natural Gas Fueling of a Spark Ignited Engine Using Hydrogen Blending," Combustion Science and Technology, Vol. 123, 1997, pp. 23-48. https://doi.org/10.1080/00102209708935620
  2. Emadi, M., Karkow, D., Salameh, T., Gohil, A. and Ratner, A., "Flame Structure Changes resulting from Hydrogen-Enrichment and Pressurization for Low-Swirl Premixed Methane-Air Flames," International Journal of Hydrogen Energy, Vol. 37, May 2012, pp. 10397-10404. https://doi.org/10.1016/j.ijhydene.2012.04.017
  3. Schefer, R. W., Wicksall, D. M. and Agrawal, A. K., "Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner," Proceedings of the Combustion Institute, Vol. 29, 2002, pp. 843-851. https://doi.org/10.1016/S1540-7489(02)80108-0
  4. Cozzi, F. and Coghe, A., "Behavior of Hydrogen-Enriched Non-Premixed Swirled Natural Gas Flames," International Journal of Hydrogen Energy, Vol. 31, November 2005, pp. 669-677. https://doi.org/10.1016/j.ijhydene.2005.05.013
  5. Hong, S., Shanbhogue, S. J. and Ghoniem, A. F., "Impact of Fuel Composition on the Recirculation Zone Structure and Its Role in Lean Premixed Flame Anchoring," Proceedings of the Combustion Institute, Vol. 35, 2015, pp. 1493-1500. https://doi.org/10.1016/j.proci.2014.05.150
  6. Allison, P. M., Driscoll, J. F. and Ihme, M., "Secondary Acoustic Characterization of a Partially-Premixed Gas Turbine Model Combustor: Syngas and Hydrocarbon Fuel Comparison," Proceedings of the Combustion Institute, Vol. 34, 2013, pp. 3145-3153. https://doi.org/10.1016/j.proci.2012.06.157
  7. Lee, M. C., Yoon, J., Joo, S., Kim, J., Hwang, J. and Yoon, Y., "Investigation into the Cause of High Multi-Mode Combustion Instability of H2/CO/CH4 Syngas in a Partially-Premixed Gas Turbine Model Combustor," Proceedings of the Combustion Institute, Vol. 35, 2015, pp. 3263-3271. https://doi.org/10.1016/j.proci.2014.07.013
  8. Zheng, Y., Zhu, M., Martinez, D. M. and Jiang, X., "Large-Eddy Simulation of Mixing and Combustion in a Premixed Swirling Combustor with Synthesis gases," Computers & Fluids, Vol. 88, April 2013, pp. 702-714. https://doi.org/10.1016/j.compfluid.2013.04.003
  9. De, A. and Acharya, S., "Dynamics of Upstream Flame Propagation in a Hydrogen-Enriched Premixed Flame," International Journal of Hydrogen Energy, Vol. 37, September 2012, pp. 17294-17309. https://doi.org/10.1016/j.ijhydene.2012.08.019
  10. Hernandez-Perez, F. E., Groth, C. P. T. and Gulder, O. L., "Large-Eddy Simulation of lean Hydrogen-Methane Turbulent Premixed Flames in the Methane-Dominated Regime," International Journal of Hydrogen Energy, Vol. 39, March 2014, pp. 7147-7157. https://doi.org/10.1016/j.ijhydene.2014.02.028
  11. Taamallah, S., Vogiatzaki, K., Alzahrani, F. M., Mokheimer, E. M. A., Habib, M. A. and Ghoniem, A. F., "Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations," Applied Energy, Vol. 154, 2015, pp. 1020-1047. https://doi.org/10.1016/j.apenergy.2015.04.044
  12. Weller, H. G., Tabor, G., Jasak, H. and Fureby, C., "A Tensorial Approach to Computational Continuum Mechanics using Object-Oriented Techniques," Computers in Physics, Vol. 12, August 1998, pp. 620-631. https://doi.org/10.1063/1.168744
  13. Nicoud, F. and Ducros, F., "Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor," Flow, Turbulence and Combustion, Vol. 62, 1993, pp. 41-60.
  14. Xia, X., "Prediction of Thermoacoustic Instability in Gas Turbine Combustor," Ph.D. thesis, Imperial College London, London, UK, 2019.
  15. Egolfopoulos, F. N., Cho, P. and Law C. K., "Laminar Flame Speeds of Methane-Air Mixtures Under Reduced and Elevated Pressures," Combustion and Flame, Vol. 76, 1989, pp. 375-391. https://doi.org/10.1016/0010-2180(89)90119-3
  16. Correa, S. M., "Turbulence-Chemistry Interactions in the Intermediate Regime of Premixed Combustion," Combustion and Flame, Vol. 93, 1993, pp. 41-60. https://doi.org/10.1016/0010-2180(93)90083-F
  17. Han, X., Li, J. and Morgans, A. S., "Predictions of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations with a Thermoacoustic Network Model," Combustion and Flame, Vol. 162, 2015, pp. 3632-3647. https://doi.org/10.1016/j.combustflame.2015.06.020
  18. Schefer, R. W., Wicksall, D. M. and Agrawal, A. K., "Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner," Proceedings of the Combustion Institute, Vol. 29, 2002, pp. 843-851. https://doi.org/10.1016/S1540-7489(02)80108-0
  19. Kim, H. S., Arghode, V. K., Linck, M. B. and Gupta, A. K., "Hydrogen Addition Effects in Confined Swirl-Stabilized Methane-Air Flame," International Journal of Hydrogen Energy, Vol. 34, 2009, pp. 1054-1062. https://doi.org/10.1016/j.ijhydene.2008.10.034
  20. Allison, P. M., Driscoll, J. F. and Ihme, M., "Acoustic Characterization of a Partially-Premixed Gas Turbine Model Combustor: Syngas and Hydrocarbon Fuel Comparison," Proceedings of the Combustion Institute, Vol. 34, 2013, pp. 3145-3153. https://doi.org/10.1016/j.proci.2012.06.157
  21. Matveev, K. and Culick, F., "A Model for Combustion Instability Involving Vortex Shedding," Combustion Science and Technology, Vol. 175, 2003, pp. 1059-1083. https://doi.org/10.1080/00102200302349