DOI QR코드

DOI QR Code

Design and test of cable based airborne capture mechanism for drone

케이블을 사용한 드론용 공중 포획 메커니즘의 설계 및 테스트

  • Jung, Sanghoon (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Nguyen, Van Sy (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Byungkyu (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • An, Taeyoung (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 정상훈 (한국항공대학교 항공우주 및 기계공학과) ;
  • 응위엔 시 (한국항공대학교 항공우주 및 기계공학과) ;
  • 김병규 (한국항공대학교 항공우주 및 기계공학부) ;
  • 안태영 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2019.11.20
  • Accepted : 2020.06.04
  • Published : 2020.06.30

Abstract

We propose a capture mechanism based on the principles of fishing nets that can be mounted on the drone using cable. The gripper mechanism, mainly proposed for the drone is heavy, and is limited to catch standardized objects. In contrast, the proposed capture device in this paper is light, flexible, and can capture various types of objects from a long distance. The theoretical relationships between cables and mechanisms were analyzed. Finally, the capture device was designed and manufactured to be installed in the drone (DJI S900) to conduct capturing experiments for various objects and verify the validity.

어망의 원리를 기반으로 케이블을 사용한, 드론에 탑재할 수 있는 포획 메커니즘을 제안하였다. 최근 제안되고 있는 드론용 포획장치로 주를 이루고 있는 그리퍼(Gripper) 메커니즘은 자중이 무겁고 정형화된 물건만을 잡을 수 있다는 한계를 가지고 있다. 본 논문에서 제안하는 포획 메커니즘은 가볍고, 유연하며, 원거리에서 다양한 형태의 물건을 포획할 수 있다. 케이블과 기구장치에 대한 역학관계를 이론적으로 분석하였으며 그에 따라 기구를 설계하고 모터와 제어기를 선정하였다. 최종적으로 포획장치를 제작하고 이를 검증하기 위해 드론(DJI S900)에 설치하여 다양한 형태의 물건에 대한 포획실험을 차례로 지상과 야외 환경에서 수행하여 타당성을 입증하였다.

Keywords

References

  1. Liew, C. F., DeLatte, D., Takeishi, N., & Yairi, T.: Recent Developments in Aerial Robotics: An Survey and Prototypes Overview. arXiv preprint arXiv:1711.10085 (2017)
  2. Thomas, J., Polin, J., Sreenath, K., & Kumar, V.: Avian-inspired grasping for quadrotor micro UAVs. In ASME 2013 international design engineering technical conferences and computers and information in engineering conference (pp. V06AT07A014-V06AT07A014). American Society of Mechanical Engineers (2013, August)
  3. Thomas, J., Loianno, G., Sreenath, K., & Kumar, V.: Toward image based visual servoing for aerial grasping and perching. In Robotics and Automation (ICRA), 2014 IEEE International Conference on (pp. 2113-2118). IEEE (2014, May)
  4. Doyle, C. E., Bird, J. J., Isom, T. A., Johnson, C. J., Kallman, J. C., Simpson, J. A., ... & Minor, M. A.: Avian-inspired passive perching mechanism for robotic rotorcraft. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 4975-4980). IEEE (2011, September)
  5. Mellinger, D., Lindsey, Q., Shomin, M., & Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 2668-2673). IEEE (2011, September)
  6. Fiaz, U. A., Toumi, N., & Shamma, J. S.: Passive aerial grasping of ferrous objects. IFAC-PapersOnLine, 50(1), 10299-10304 (2017) https://doi.org/10.1016/j.ifacol.2017.08.1495
  7. Kessens, C. C., Thomas, J., Desai, J. P., & Kumar, V.: Versatile aerial grasping using self-sealing suction. In Robotics and Automation (ICRA), 2016 IEEE International Conference on (pp. 3249-3254). IEEE (2016, May)
  8. Pounds, P. E., Bersak, D. R., & Dollar, A. M.: Practical aerial grasping of unstructured objects. In Technologies for Practical Robot Applications (TePRA), 2011 IEEE Conference on (pp. 99-104). IEEE (2011, April)
  9. Pounds, P. E., Bersak, D. R., & Dollar, A. M.: Grasping from the air: Hovering capture and load stability. In Robotics and Automation (ICRA), 2011 IEEE International Conference on (pp. 2491-2498). IEEE (2011, May)
  10. Orsag, M., Korpela, C., & Oh, P.: Modeling and control of MM-UAV: Mobile manipulating unmanned aerial vehicle. Journal of Intelligent & Robotic Systems, 69(1-4), 227-240 (2013) https://doi.org/10.1007/s10846-012-9723-4
  11. Lin, S., Wang, J., Yang, W., & Xia, G.: Toward autonomous rotation-aware unmanned aerial grasping. arXiv preprint arXiv:1811.03921 (2018)
  12. Ramon Soria, P., Arrue, B. C., & Ollero, A.: Detection, location and grasping objects using a stereo sensor on UAV in outdoor environments. Sensors, 17(1), 103 (2017) https://doi.org/10.3390/s17010103
  13. https://www.dji.com/kr/spreading-wings-s900
  14. Lemieux, J.: DJI S-1000 Spreading Wings Octocopter: Determination of Rotor Downwash Slipstream Size (2016)
  15. Blevins, R. D.: Applied fluid dynamics handbook. New York, Van Nostrand Reinhold Co., 1984, 568 p (1984)
  16. Hoerner, S. F., & Borst, H. V.: Fluid-Dynamic Lift, Practical Information on Aerodynamic and Hydrodynamic Lift. BORST (HENRY V) AND ASSOCIATES WAYNE PA (1975)
  17. https://www.engineeringtoolbox.com/pressure-d_587.html
  18. https://www.climate-charts.com/World-Climate-Maps.html#wind-speed
  19. http://www.kida.re.kr/frt/board/frtNormalBoardDetail.do?do?sidx=382&idx=1679&depth=4://