DOI QR코드

DOI QR Code

Application of Teeth Whitening LED for Prevention of Dental Caries : Antimicrobial Photodynamic Therapy Approach

치아우식 예방을 위한 치아미백기의 활용 : 광역동 치료로서의 접근

  • Park, Choa (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Howon (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Juhyun (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Seo, Hyunwoo (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Siyoung (Department of Oral Microbiology, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University)
  • 박초아 (강릉원주대학교 치과대학 소아치과학교실 및 구강과학연구소) ;
  • 박호원 (강릉원주대학교 치과대학 소아치과학교실 및 구강과학연구소) ;
  • 이주현 (강릉원주대학교 치과대학 소아치과학교실 및 구강과학연구소) ;
  • 서현우 (강릉원주대학교 치과대학 소아치과학교실 및 구강과학연구소) ;
  • 이시영 (강릉원주대학교 미생물학 및 면역학교실 및 구강과학연구소)
  • Received : 2019.09.08
  • Accepted : 2019.11.04
  • Published : 2020.02.29

Abstract

The present study is aimed to assess the effect of antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans biofilm through teeth whitening light emitting diode (LED). Planktonic and dynamic biofilm state cultures of S. mutans were used. Erythrosine 20 μM/L was used as the photosensitizer. Irradiation was performed by exposing cultures to clinic and homecare whitening LEDs for 15 minutes. The viability was measured through Colony Forming Unit counts and confocal laser scanning microscopy. aPDT using whitening LEDs and erythrosine significantly decreased the CFU count of S. mutans compared to that in the control group. Dynamic biofilm group showed more resistant features to aPDT compared with planktonic state. Clinic and homecare whitening LED device showed similar antimicrobial effect. The whitening LED, which could irradiate the entire oral arch, showed a significant photodynamic effect on cariogenic S. mutans biofilm. aPDT mediated by erythrosine and LEDs used for teeth whitening exhibited promising antimicrobial activity.

이 연구의 목적은 악궁 전반적으로 조사가 가능한 미백 LED를 이용하여 우식원성 Streptococcus mutans에 대한 광역동 치료의 효과를 알아보기 위한 in vitro 연구이다. S. mutans를 각각 두가지 다른 단계의 상태로 배양하였다. Planktonic 상태와 Hydroxyapatite disk와 CDC biofilm reactor를 5일간 사용하여 동적인 바이오필름 상태를 형성하였다. 20 μM 로 희석한 erythrosine을 5분간 전처리한후 가정용 미백기와 진료실 미백기를 사용하여 각 15분씩 광조사를 시행하였다. 실험 종료 후 각 실험군의 Colony Forming Unit를 측정하였으며 공초점 레이저 현미경를 이용하여 각 조건에 따른 광역동 치료 효과를 비교하였다. 실험 결과 S. mutans에 대한 aPDT효과는 control군과 비교시에 각각 플랑크토닉상태와 동적인 바이오필름 상태에서 모두 통계적으로 유의한 광역동 치료 효과가 나타났다(각각 p = 0.001, p = 0.002). 하지만 동적인 바이오필름 상태에서는 플랑크토닉 상태보다 광역동치료에 내성을 지녀 항미생물 효과가 떨어지는 양상이 관찰되었다. 진료실용 미백 LED와 가정용 미백LED는 유사한 항미생물 효과를 나타냈다. 구강악궁 전반적 조사가 가능한 미백용 LED는 우식의 원인이 되는 S. mutans 바이오필름에 유의한 광역동 치료의 효과를 나타냈으며, 이러한 결과는 치아 우식 예방으로의 광역동 치료의 임상적 적용 가능성을 제시한다.

Keywords

References

  1. Bowen WH : Do we need to be concerned about dental caries in the coming millennium? Crit Rev Oral Biol Med , 13:126-131, 2002. https://doi.org/10.1177/154411130201300203
  2. Bowen WH, Koo H : Biology of Streptococcus mutans - derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res , 45:69-86, 2011. https://doi.org/10.1159/000324598
  3. Marsh PD : Controlling the oral biofilm with antimicrobials. J Dent , 38:S11-15, 2010. https://doi.org/10.1016/S0300-5712(10)70005-1
  4. Van Straten D, Mashayekhi V, Robinson DJ, et al.: Oncologic photodynamic therapy : Basic principles, current clinical status and future directions. Cancers (Basel) , 9:E19, 2017.
  5. Dolmans DE, Fukumura D, Jain RK : Photodynamic therapy for cancer. Nat Rev Cancer, 3:380-387, 2003. https://doi.org/10.1038/nrc1071
  6. Hamblin MR : Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol , 33:67-73, 2016. https://doi.org/10.1016/j.mib.2016.06.008
  7. Cieplik F, Deng D, Maisch T, et al.: Antimicrobial photodynamic therapy - what we know and what we don't. Crit Rev Microbiol , 44:571-589, 2018. https://doi.org/10.1080/1040841x.2018.1467876
  8. Konopka K, Goslinski T : Photodynamic therapy in dentistry. J Dent Res , 86:694-707, 2007. https://doi.org/10.1177/154405910708600803
  9. Tahmassebi JF, Drogkari E, Wood SR : A study of the control of oral plaque biofilms via antibacterial photodynamic therapy. Eur Arch Paediatr Dent , 16:433-440, 2015. https://doi.org/10.1007/s40368-014-0165-5
  10. Nagata JY, Hioka N, Hayacibara MF, et al.: Antibacterial photodynamic therapy for dental caries: Evaluation of the photosensitizers used and light source properties. Photodiagnosis Photodyn Ther , 9:122-131, 2012. https://doi.org/10.1016/j.pdpdt.2011.11.006
  11. Kim JY, Park HW, Lee SY, et al.: Antimicrobial effect on Streptococcus mutans in photodynamic therapy using different light source. J Korean Acad Pediatr Dent , 45:82-89, 2018.
  12. Choi SJ, Park HW, Lee SY, et al.: Optimum treatment parameters for photodynamic antimicrobial chemotherapy on Streptococcus mutans biofilms. J Korean Acad Pediatr Dent , 42:151-157, 2015.
  13. Lee YH, Park HW, Lee SY, et al.: The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit. Int J Oral Sci , 4:196-201, 2012. https://doi.org/10.1038/ijos.2012.63
  14. Soares JA, Soares SMCS, de Macedo Farias L, et al.: Exploring different photodynamic therapy parameters to optimize elimination of Enterococcus faecalis in planktonic form. Photodiagnosis Photodyn Ther, 22:127-131, 2018. https://doi.org/10.1016/j.pdpdt.2018.03.009
  15. Pourhajibagher M, Kazemian H, Bahador A, et al.: Exploring different photosensitizers to optimize elimination of planktonic and biofilm forms of Enterococcus faecalis from infected root canal during antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther , 24:206-211, 2018. https://doi.org/10.1016/j.pdpdt.2018.09.014
  16. Material Safety Data sheet of Erythrosine B, Chemicals & Laboratory Equipment.
  17. Wood S, Metcalf D, Devine D, Robinson C : Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother, 57:680-684, 2006. https://doi.org/10.1093/jac/dkl021
  18. Mondelli RF, Soares AF, Bombonatti JF, et al.: Evaluation of temperature increase during in-office bleaching. J Appl Oral Sci , 24:136-141, 2016. https://doi.org/10.1590/1678-775720150154
  19. Malallah R, Li H, Sheridan JT, et al.: Improving the uniformity of holographic recording using multi-layer photopolymer: Part II. Experimental results. J Opt Soc Am A Opt Image Sci Vis , 36:334-344, 2019. https://doi.org/10.1364/JOSAA.36.000334
  20. de Sousa DL, Lima RA, Duarte S, et al.: Effect of twice-daily blue light treatment on matrix-rich biofilm development. PLoS One , 10:e0131941, 2015. https://doi.org/10.1371/journal.pone.0131941
  21. Sedlacek MJ, Walker C : Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol, 22:333-339, 2007. https://doi.org/10.1111/j.1399-302X.2007.00366.x
  22. Fontana CR, Abernethy AD, Soukos NS, et al.: The antibacterial effect of photodynamic therapy in dental plaquederived biofilms. J Periodont Res , 44:751-759, 2009. https://doi.org/10.1111/j.1600-0765.2008.01187.x
  23. Baab DA, Broadwell AH, Williams BL : A comparison of antimicrobial activity of four disclosant dyes. J Dent Res , 62:837-841, 1983. https://doi.org/10.1177/00220345830620071601
  24. Kato H, Komagoe K, Katsu T, et al.: Xanthene dyes induce membrane permeabilization of bacteria and erythrocytes by photoinactivation. Photochem Photobiol , 88:423-431, 2012. https://doi.org/10.1111/j.1751-1097.2012.01080.x
  25. Kim S, Kim J, Kim O, et al.: In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation. Photomed Laser Surg , 31:554-562, 2013. https://doi.org/10.1089/pho.2012.3343
  26. Chebath-Taub D, Steinberg D, Featherstone JD, Feuerstein O : Influence of blue light on Streptococcus mutans re-organization in biofilm. J Photochem Photobiol B , 116:75-78. 2012. https://doi.org/10.1016/j.jphotobiol.2012.08.004
  27. Felix Gomez GG, Lippert F, Gregory RL, et al.: Effect of violet-blue light on Streptococcus mutans -induced enamel demineralization. Dent J (Basel) , 6:E6, 2018.