DOI QR코드

DOI QR Code

Accuracy and Precision of Three-dimensional Imaging System of Children's Facial Soft Tissue

소아 얼굴 연조직의 3차원 입체영상의 정확성 및 재현성 평가

  • Choi, Kyunghwa (Department of Pediatric Dentistry, Kyung Hee University, Dental Hospital at Gangdong) ;
  • Kim, Misun (Department of Pediatric Dentistry, Kyung Hee University, Dental Hospital at Gangdong) ;
  • Lee, Koeun (Department of Pediatric Dentistry, Kyung Hee University Dental Hospital) ;
  • Nam, Okhyung (Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University) ;
  • Lee, Hyo-seol (Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University) ;
  • Choi, Sungchul (Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University) ;
  • Kim, Kwangchul (Department of Pediatric Dentistry, Kyung Hee University, Dental Hospital at Gangdong)
  • 최경화 (강동경희대학교병원 치과병원 소아치과) ;
  • 김미선 (강동경희대학교병원 치과병원 소아치과) ;
  • 이고은 (경희대학교 치과병원 소아치과) ;
  • 남옥형 (경희대학교 치의학전문대학원 소아치과학교실) ;
  • 이효설 (경희대학교 치의학전문대학원 소아치과학교실) ;
  • 최성철 (경희대학교 치의학전문대학원 소아치과학교실) ;
  • 김광철 (강동경희대학교병원 치과병원 소아치과)
  • Received : 2019.07.15
  • Accepted : 2019.09.05
  • Published : 2020.02.29

Abstract

The purpose of this study was to evaluate the accuracy and precision of the three-dimensional (3D) imaging system of children's facial soft tissue by comparing linear measurements. The subjects of the study were 15 children between the ages of 7 and 12. Twenty-three landmarks were pointed on the face of each subject and 16 linear measurements were directly obtained 2 times using an electronic caliper. Two sets of 3D facial images were made by the 3D scanner. The same 16 measurements were obtained on each 3D image. In the accuracy test, the total average difference was 0.9 mm. The precision of 3D photogrammetry was almost equivalent to that of direct measurement. Thus, 3D photogrammetry by the 3D scanner in children had sufficient accuracy and precision to be used in clinical setting. However, the 3D imaging system requires the subject's compliance for exact images. If the clinicians provide specific instructions to children while obtaining 3D images, the 3D device is useful for investigating children's facial growth and development. Also the device can be a valuable tool for evaluating the results of orthodontic and orthopedic treatments.

이 연구의 목적은 소아 얼굴 연조직의 선형 길이를 비교하여 삼차원 입체영상의 정확성과 재현성을 평가하는 것이다. 연구는 7 - 12세 아동 15명을 대상으로 하였다. 환자의 안모에 23개의 계측 점을 표시하고, 전자 캘리퍼를 이용하여 16 개의 선형길이를 직접 2번 계측하였다. 3차원(3D) 스캐너를 이용하여 2개의3D 얼굴 영상을 만들었으며, 직접계측과 동일한 16개의 선형 길이를 계측하였다. 연구결과 정확성 평가에서 전체 평균 차이 값은 0.9 mm였다. 3D 영상의 재현성은 직접계측의 재현성과 거의 유사한 정도로 나타났다. 이에 따라 이 3D 영상장비는 소아에서 임상적으로 충분한 정확성과 재현성을 가지고 있었다. 3D 영상 시스템은 정확한 이미지를 위하여 대상의 협조가 필요하다. 소아의 정확한 3D영상을 얻기 위한 구체적인 지시사항을 바탕으로 촬영을 한다면, 이 3D 영상 장비는 향후 소아의 성장과 발달을 조사하고, 소아교정치료에서 결과를 평가하는데 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. Proffit WR, Fields Jr HW, Sarver DM : Contemporary orthodontics, 4th ed., Mosby, 3-22, 2006.
  2. Farkas LG : Anthropometry of the Head and Face, 2nd ed., Raven Press, 20-88, 191-221, 1994.
  3. Toma AM, Zhurov A, Playle R, Richmond S : A threedimensional look for facial differences between males and females in a British-Caucasian sample aged $15\frac{1}{2}$ years old. Orthod Craniofac Res , 11:180-185, 2008. https://doi.org/10.1111/j.1601-6343.2008.00428.x
  4. Sforza C, Peretta R, Ferrario VF, et al.: Three-dimensional facial morphometry in skeletal Class III patients : A noninvasive study of soft-tissue changes before and after orthognathic surgery. Br J Oral Maxillofac Surg , 45:138-144, 2007. https://doi.org/10.1016/j.bjoms.2005.12.013
  5. Kim SH, Jung WY, Park YG, et al.: Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system. Korean J Orthod , 45:105-112, 2015. https://doi.org/10.4041/kjod.2015.45.3.105
  6. Weinberg SM, Scott NM, Marazita ML, et al.: Digital threedimensional photogrammetry : evaluation of anthropometric precision and accuracy using a Genex 3D camera system. Cleft Palate Craniofac J , 41:507-518, 2004. https://doi.org/10.1597/03-066.1
  7. de Menezes M, Rosati R, Ferrario VF, Sforza C : Accuracy and reproducibility of a 3-dimensional stereophotogrammetric imaging system. J Oral Maxillofac Surg , 68:2129-2135, 2010. https://doi.org/10.1016/j.joms.2009.09.036
  8. Mollemans W, Schutyser F, Suetens P, et al.: Predicting soft tissue deformations for a maxillofacial surgery planning system : from computational strategies to a complete clinical validation. Med Image Anal , 11:282-301, 2007. https://doi.org/10.1016/j.media.2007.02.003
  9. Ayoub AF, Xiao Y, Hadley D, et al.: Towards building a photo-realistic virtual human face for craniomaxillofacial diagnosis and treatment planning. Int J Oral Maxillofac Surg , 36:423-428, 2007. https://doi.org/10.1016/j.ijom.2007.02.003
  10. Weinberg SM, Naidoo S, Marazita ML, et al.: Anthropometric precision and accuracy of digital three-dimensional photogrammetry : comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry. J Craniofac Surg , 17:477-483, 2006. https://doi.org/10.1097/00001665-200605000-00015
  11. Wong JY, Oh AK, Deutsch CK, et al.: Validity and reliability of craniofacial anthropometric measurement of 3D digital photogrammetric images. Cleft Palate Craniofac J , 45:232-239, 2008. https://doi.org/10.1597/06-175
  12. Li G, Wei J, Feng X, et al.: Three-dimensional facial anthropometry of unilateral cleft lip infants with a structured light scanning system. J Plastic Reconstr Aesthet Surg , 66:1109-1116, 2013. https://doi.org/10.1016/j.bjps.2013.04.007
  13. Kusnoto B, Evans CA : Reliability of a 3D surface laser scanner for orthodontic applications. Am J Orthod Dentofacial Orthop , 122:342-348, 2002. https://doi.org/10.1067/mod.2002.128219
  14. Morpheus Co., Ltd. : Morpheus 3D Scanner. Avaialble from URL: https://morpheus3d.co.kr/wp/en/imaging-solutions/morpheus3d-scanner/ (Accessed on March 20, 2019).
  15. Camison L, Bykowski M, Weinberg SM, et al.: Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. Int J Oral Maxillofac Surg , 47:403-410, 2018. https://doi.org/10.1016/j.ijom.2017.08.008
  16. Faugeras O : Three-dimensional computer vision : a geometric viewpoint, MIT press, 165-243, 1993.
  17. Kim JH, Viana MA, BeGole EA, et al.: The effectiveness of protraction face mask therapy : a meta-analysis. Am J Orthod Dentofacial Orthop , 115:675-685, 1999. https://doi.org/10.1016/S0889-5406(99)70294-5
  18. Kurt G, Uysal T, Yagci A : Soft and hard tissue profile changes after rapid maxillary expansion and face mask therapy. World J Orthod , 11:e10-18, 2010.
  19. Mandall N, DiBiase A, Doherty B, et al.: Is early class III protraction facemask treatment effective? A multicentre, randomized, controlled trial : 15-month follow-up. J Orthod , 37:149-161, 2010. https://doi.org/10.1179/14653121043056
  20. The Council of the Faculty of Orthodontics : Textbook of Orthodontics, 2nd ed., DaehanNarae, 69, 2006.
  21. Tulloch JF, Phillips C, Koch G, Proffit WR : The effect of early intervention on skeletal pattern in Class II malocclusion : a randomized clinical trial. Am J Orthod Dentofacial Orthop , 111:391-400, 1997. https://doi.org/10.1016/S0889-5406(97)80021-2