References
- Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6(11): 10395-10412. doi:10.3390/rs61110395.
- Cohen, W. B., 1991. Response of vegetation indices to change in three measures of leaf water stress. Photogrammetric Engineering and Remote Sensing 57(2):195-202.
- Das, P. K., B. Laxman, S. V. C. Kameswara Rao, M. V. R. Seshasai, and V. K. Dadhwal, 2015. Monitoring of bacterial leaf blight in rice using ground-based hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India. International Journal of Pest Management 61(4):359-368. doi:10.1080/09670874.2015.1072652.
- Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak, 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58: 289-298. doi:10.1016/S0034-4257(96)00072-7.
- Jordan, C. F., 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology 50: 663-666. doi:10.2307/1936256.
- Kim, S. H., 2016. A study on the diffusion of Korean agricultural ICT and role of the agricultural cooperative federation using the theory of technology adoption life cycle and chasm. Cooperative Management Review 45: 1-27. (in Korean).
- KOSIS, 2018. Korean Statistical Information Service Homepage. http://www.kosis.kr/Acessed 1 May 2020. (in Korean)
- Ku, H. S., J. H. Min, and J. Y. Park, 2015. Survey of ICT-agriculture convergence. Electronics and Telecommunications Trends 30(2): 49-58. (in Korean)
- Na, S. I., S. Y. Hong, C. W. Park, K. D. Kim, and K. D. Lee, 2016a. Estimation of highland Kimchi cabbage growth using UAV NDVI and agro-meteorological factors. Korean Journal of Soil Science and Fertilizer 49(5): 420-428 (in Korean). doi:10.7745/KJSSF.2016.49.5.420.
- Na, S. I., C. W. Park, Y. K. Cheong, C. S. Kang, I. B. Choi, and K. D. Lee, 2016b. Selection of optimal vegetation indices for estimation of barley & wheat growth based on remote sensing - An application of Unmanned Aerial Vehicle and field investigation data -. Korean Journal of Remote Sensing 32(5): 483-497 (in Korean). doi:10.7780/kjrs.2016.32.5.7.
- Lee, K. D., S. I. Na, S. C. Baek, K. D. Park, J. S. Choi, S. J. Kim, H. J. Kim, H. S. Choi, and S. Y. Hong, 2015. Estimating the amount of nitrogen in hairy vetch on paddy fields using unmanned aerial vehicle imagery. Korean Journal of Soil Science and Fertilizer 48(5): 384-390 (in Korean). doi:10.7745/KJSSF.2015.48.5.384.
- Lee, K. D., Y. E. Lee, C. W. Park, S. Y. Hong, and S. I. Na, 2016. Study on reflectance and NDVI of aerial images using a fixed-wing UAV "Ebee". Korean Journal of Soil Science and Fertilizer 49(6): 731-742 (in Korean). doi:10.7745/KJSSF.2016.49.6.731.
- Lee, K. D., C. W. Park, K. H. So, and S. I. Na, 2017. Selection optimal vegeation indices and regression model for estimation of rice growth using UAV aerial images. Korean Journal of Soil Science and Fertilizer 50(5): 409-421 (in Korean). doi:10.7745/KJSSF.2017.50.5.409.
- Lee, K. D., H. Y. An, C. W. Park, K. H. So, S. I. Na, and S. Y. Jang. 2019. Estimation of rice grain yield distribution using UAV imagery. Journal of the Korean Society of Agricultural Engineers 61(4): 1-10 (in Korean). doi:10.5389/KSAE.2019.61.4.001.
- Park, J. K., and J. H. Park, 2017. Analysis of rice field drought area using unmanned aerial vehicle (UAV) and geographic information system (GIS) Methods. Journal of the Korean Society of Agricultural Engineers 57(6): 91-97 (in Korean). doi:10.5389/KSAE.2017.59.3.021.
- Pearson, R. L., and L. D. Miller, 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment, 1357-1381. Environmental Research Institute of Michigan, Ann Arbor, MI.
- Torres-Sanchez J., J. M. Pena, A. I. de Castro, and F. Lopez-Granados, 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture 103: 104-113. doi:10.1016/j.compag.2014.02.009.
- Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127-150. doi:10.1016/0034-4257(79)90013-0.
- Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1974. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium, Freden, S. C., E. P. Mercanti, M. Becker (Eds.), Technical Presentations, NASA SP-351.
- Sripada, R. P., R. W. Heiniger, J. G. White, and A. D. Meijer, 2006. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal 98: 968-977. doi:10.2134/agronj2005.0200.
- Xiang, H., and L. Tian, 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 108(2): 174-190. doi:10.1016/j.biosystemseng.2010.11.010.
- Qin, Z., and M. Zhang, 2005. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation 7(2): 115-128. doi:10.1016/j.jag.2005.03.004.