DOI QR코드

DOI QR Code

무인비행체 영상 기반 연차 간 벼 생육 및 흰잎마름병 병해 추정

Yearly Estimation of Rice Growth and Bacterial Leaf Blight Inoculation Effect Using UAV Imagery

  • Lee, KyungDo (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, SangMin (National Institute of Crop Science, Rural Development Administration) ;
  • An, HoYong (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, ChanWon (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hong, SukYoung (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • So, KyuHo (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Na, SangIl (National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2020.05.12
  • 심사 : 2020.07.21
  • 발행 : 2020.07.31

초록

The purpose of this study is to develop a technology for estimating rice growth and damage effect according to bacterial leaf blight using UAV multi-spectral imagery. For this purpose, we analyzed the change of aerial images, rice growth factors (plant height, dry weight, LAI) and disease effects according to disease occurrence by using UAV images for 3 rice varieties (Milyang23, Sindongjin-byeo, Saenuri-byeo) from 2017 to 2018. The correlation between vegetation index and rice growth factor during vegetative growth period showed a high value of 0.9 or higher each year. As a result of applying the growth estimation model built in 2017 to 2018, the plant height of Milyang23 showed good error withing 10%. However, it is considered that studies to improve the accuracy of other items are needed. Fixed wing unmanned aerial photographs were also possible to estimate the damage area after 2 to 4 weeks from inoculation. Although sensing data in the multi-spectral (Blue, Green, Red, NIR) band have limitations in early diagnosis of rice disease, for rice varieties such as Milyang23 and Sindongjin-byeo, it was possible to construct the equation of infected leaf area ratio and rice yield estimation using UAV imagery in early and mid-September with high correlation coefficient of 0.8 to 0.9. The results of this study are expected to be useful for farming and policy support related to estimating rice growth, rice plant disease and yield change based on UAV images.

키워드

참고문헌

  1. Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6(11): 10395-10412. doi:10.3390/rs61110395.
  2. Cohen, W. B., 1991. Response of vegetation indices to change in three measures of leaf water stress. Photogrammetric Engineering and Remote Sensing 57(2):195-202.
  3. Das, P. K., B. Laxman, S. V. C. Kameswara Rao, M. V. R. Seshasai, and V. K. Dadhwal, 2015. Monitoring of bacterial leaf blight in rice using ground-based hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India. International Journal of Pest Management 61(4):359-368. doi:10.1080/09670874.2015.1072652.
  4. Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak, 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58: 289-298. doi:10.1016/S0034-4257(96)00072-7.
  5. Jordan, C. F., 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology 50: 663-666. doi:10.2307/1936256.
  6. Kim, S. H., 2016. A study on the diffusion of Korean agricultural ICT and role of the agricultural cooperative federation using the theory of technology adoption life cycle and chasm. Cooperative Management Review 45: 1-27. (in Korean).
  7. KOSIS, 2018. Korean Statistical Information Service Homepage. http://www.kosis.kr/Acessed 1 May 2020. (in Korean)
  8. Ku, H. S., J. H. Min, and J. Y. Park, 2015. Survey of ICT-agriculture convergence. Electronics and Telecommunications Trends 30(2): 49-58. (in Korean)
  9. Na, S. I., S. Y. Hong, C. W. Park, K. D. Kim, and K. D. Lee, 2016a. Estimation of highland Kimchi cabbage growth using UAV NDVI and agro-meteorological factors. Korean Journal of Soil Science and Fertilizer 49(5): 420-428 (in Korean). doi:10.7745/KJSSF.2016.49.5.420.
  10. Na, S. I., C. W. Park, Y. K. Cheong, C. S. Kang, I. B. Choi, and K. D. Lee, 2016b. Selection of optimal vegetation indices for estimation of barley & wheat growth based on remote sensing - An application of Unmanned Aerial Vehicle and field investigation data -. Korean Journal of Remote Sensing 32(5): 483-497 (in Korean). doi:10.7780/kjrs.2016.32.5.7.
  11. Lee, K. D., S. I. Na, S. C. Baek, K. D. Park, J. S. Choi, S. J. Kim, H. J. Kim, H. S. Choi, and S. Y. Hong, 2015. Estimating the amount of nitrogen in hairy vetch on paddy fields using unmanned aerial vehicle imagery. Korean Journal of Soil Science and Fertilizer 48(5): 384-390 (in Korean). doi:10.7745/KJSSF.2015.48.5.384.
  12. Lee, K. D., Y. E. Lee, C. W. Park, S. Y. Hong, and S. I. Na, 2016. Study on reflectance and NDVI of aerial images using a fixed-wing UAV "Ebee". Korean Journal of Soil Science and Fertilizer 49(6): 731-742 (in Korean). doi:10.7745/KJSSF.2016.49.6.731.
  13. Lee, K. D., C. W. Park, K. H. So, and S. I. Na, 2017. Selection optimal vegeation indices and regression model for estimation of rice growth using UAV aerial images. Korean Journal of Soil Science and Fertilizer 50(5): 409-421 (in Korean). doi:10.7745/KJSSF.2017.50.5.409.
  14. Lee, K. D., H. Y. An, C. W. Park, K. H. So, S. I. Na, and S. Y. Jang. 2019. Estimation of rice grain yield distribution using UAV imagery. Journal of the Korean Society of Agricultural Engineers 61(4): 1-10 (in Korean). doi:10.5389/KSAE.2019.61.4.001.
  15. Park, J. K., and J. H. Park, 2017. Analysis of rice field drought area using unmanned aerial vehicle (UAV) and geographic information system (GIS) Methods. Journal of the Korean Society of Agricultural Engineers 57(6): 91-97 (in Korean). doi:10.5389/KSAE.2017.59.3.021.
  16. Pearson, R. L., and L. D. Miller, 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment, 1357-1381. Environmental Research Institute of Michigan, Ann Arbor, MI.
  17. Torres-Sanchez J., J. M. Pena, A. I. de Castro, and F. Lopez-Granados, 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture 103: 104-113. doi:10.1016/j.compag.2014.02.009.
  18. Tucker, C. J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127-150. doi:10.1016/0034-4257(79)90013-0.
  19. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1974. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium, Freden, S. C., E. P. Mercanti, M. Becker (Eds.), Technical Presentations, NASA SP-351.
  20. Sripada, R. P., R. W. Heiniger, J. G. White, and A. D. Meijer, 2006. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal 98: 968-977. doi:10.2134/agronj2005.0200.
  21. Xiang, H., and L. Tian, 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 108(2): 174-190. doi:10.1016/j.biosystemseng.2010.11.010.
  22. Qin, Z., and M. Zhang, 2005. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation 7(2): 115-128. doi:10.1016/j.jag.2005.03.004.