DOI QR코드

DOI QR Code

A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions

  • Menasria, Abderrahmane (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Kaci, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Adda Bedia, E.A. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • Received : 2019.05.13
  • Accepted : 2020.07.13
  • Published : 2020.08.10

Abstract

The current work, present dynamic analysis of the FG-sandwich plate seated on elastic foundation with various kinds of support using refined shear deformation theory. The present analytical model is simplified which the unknowns number are reduced. The zero-shear stresses at the free surfaces of the FG-sandwich plate are ensured without introducing any correction factors. The four equations of motion are determined via Hamilton's principle and solved by Galerkin's approach for FG-sandwich plate with three kinds of the support. The proposed analytical model is verified by comparing the results with those obtained by other theories existing in the literature. The parametric studies are presented to detect the various parameters influencing the fundamental frequencies of the symmetric and non-symmetric FG-sandwich plate with various boundary conditions.

Keywords

Acknowledgement

The first author would like to acknowledge the support provided by the Directorate General for Scientific Research and Technological Development (DGRSDT).

References

  1. Abdelaziz H.H., Meziane M.A.A, Bousahla A.A., Tounsi A., Mahmoud S.R. and Alwabli A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. http://dx.doi.org/10.12989/scs.2017.25.6.693.
  2. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: a micromechanical approach", Iran J. Sci. Technol. Trans. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  3. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. DOI: 10.12989/cme.2020.2.2.125.
  4. Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B: Eng., 96, 136-152. doi:10.1016/j.compositesb.2016.04.035.
  5. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  6. Badriev, I.B., Makarov, M.V. and Paimushin, V.N. (2018), "Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core", Lobachevskii Journal of Mathematics, 39(3), 448-457. doi:10.1134/s1995080218030046.
  7. Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1),71-90. https://doi.org/10.12989/cme.2019.1.1.071.
  8. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Design, 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
  9. Bensattalah, T., Zidour, M. and Daouadji, T. H. (2019b), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  10. Bensattalah, T., Zidour, M. and Hassaine Daouadji, T. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
  11. Bensattalah, T., Zidour, M., Hassaine Daouadji, T. and Bouakaz, K. (2019a), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269.
  12. Chen, J., Zhang, W., Yao, M., Liu, J. and Sun, M. (2018), "Vibration reduction in truss core sandwich plate with internal nonlinear energy sink", Compos. Struct., 193, 180-188. doi:10.1016/j.compstruct.2018.03.048.
  13. Dinh Duc, N. and Hong Cong, P. (2016), "Nonlinear thermo-mechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations", J. Sandw. Struct. Mater., 20(2), 191-218. doi:10.1177/1099636216648488.
  14. Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. doi:10.1016/j.jocs.2017.06.015.
  15. Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin-Wall. Struct., 146, 106468. doi:10.1016/j.tws.2019.106468.
  16. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P., Anh, V.M. and Quang, V.D. (2015), "Nonlinear vibration and dynamic response of imperfect eccentrically stiffened shear deformable sandwich plate with functionally graded material in thermal environment", J. Sandw. Struct. Mater., 18(4), 445- 473. doi:10.1177/1099636215602142.
  17. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique", Compos. Mater. Eng., 2(1), 25-41. https://doi.org/10.12989/cme.2020.2.1.025.
  18. Gholamzadeh babaki, M.H. and Shakouri, M. (2019), "Free and forced vibration of sandwich plates with electrorheological core and functionally graded face layers", Mech. Based Des. Struct. Mach., 1-18. doi:10.1080/15397734.2019.1698436.
  19. Hosseini, M., Arani, A.G., Karamizadeh, M.R., Afshari, H. and Niknejad, S. (2019), "Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow", Wind Struct., 29(6), 457-469. https://doi.org/10.12989/was.2019.29.6.457.
  20. Iurlaro, L., Gherlone, M. and Di Sciuva, M. (2014), "Bending and free vibration analysis of functionally graded sandwich plates using the Refined Zigzag Theory", J. Sandw. Struct. Mater., 16(6), 669-699. doi:10.1177/1099636214548618.
  21. Khorshidi, K. and Karimi, M. (2019), "Flutter analysis of sandwich plates with functionally graded face sheets in thermal environment", Aerosp. Sci. Technol., 105461. doi:10.1016/j.ast.2019.105461.
  22. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. doi:10.1016/j.ast.2017.03.016.
  23. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Design, 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  24. Li, C., Shen, H.S. and Wang, H. (2020b), "Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core", Compos. Struct., 111894. doi:10.1016/j.compstruct.2020.111894.
  25. Li, C., Shen, H.S., Wang, H. and Yu, Z. (2020a), "Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core", Int. J. Mech. Sci., 105472. doi:10.1016/j.ijmecsci.2020.105472.
  26. Li, D., Deng, Z., Xiao, H., & Jin, P. (2018), "Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core", Thin-Walled Structures., 122, 8- 16. doi:10.1016/j.tws.2017.09.033.
  27. Liu, H., Lv, Z. and Wu, H. (2019), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory", Compos. Struct., doi:10.1016/j.compstruct.2019.01.090.
  28. Lopez-Chavarria, S., Luevanos-Rojas, A., Medina-Elizondo, M., Sandoval-Rivas, R. and Velazquez-Santillan, F. (2019), "Optimal design for the reinforced concrete circular isolated footings", Adv. Comput. Design, 4(3), 273-294. https://doi.org/10.12989/acd.2019.4.3.273.
  29. Mehar K., Panda S.K., Devarajan Y. and Choubey G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  30. Mirzaalian, M., Aghadavoudi, F. and Moradi-Dastjerdi, R. (2019), "Bending Behavior of Sandwich Plates with Aggregated CNT-Reinforced Face Sheets", J. Solid Mech., 11(1), 26-38. doi: 10.22034/jsm.2019.664214.
  31. Moita, J.S., Araujo, A.L., Correia, V.F., Mota Soares, C.M. and Herskovits, J. (2018), "Active-passive damping in functionally graded sandwich plate/shell structures", Compos. Struct., doi:10.1016/j.compstruct.2018.01.089.
  32. Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers", Int. J. Mech. Sci., 105283. doi:10.1016/j.ijmecsci.2019.105283.
  33. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Design, 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  34. Nikkhoo, A., Asili, S., Sadigh, S., Hajirasouliha, I. and Karegar, H. (2019), "A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses", Adv. Comput. Design., 4(3), 307-326. https://doi.org/10.12989/acd.2019.4.3.307.
  35. Pagani, A., Valvano, S. and Carrera, E. (2016), "Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements", J. Sandw. Struct. Mater., 20(1), 4-41. doi:10.1177/1099636216650988.
  36. Pandey, S. and Pradyumna, S. (2018), "Analysis of functionally graded sandwich plates using a higher-order layerwise theory", Composites Part B: Engineering. doi:10.1016/j.compositesb.2018.08.121.
  37. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  38. Rekatsinas, C.S. and Saravanos, D.A. (2017), "A hermite spline layerwise time domain spectral finite element for guided wave prediction in laminated composite and sandwich plates", J. Vib. Acoust., 139(3), 031009. doi:10.1115/1.4035702.
  39. Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aerosp. Sci. Technol., doi:10.1016/j.ast.2019.02.017.
  40. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Design., 3(2), 165-190. https://doi.org/10.12989/acd.2018.165.
  41. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  42. Sahouane, A., Hadji, L. and Bourada, M., (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  43. Shokrieh, M.M. and Kondori, M.S, (2020), "Effects of adding graphene nanoparticles in decreasing of residual stresses of carbon/epoxy laminated composites", Compos. Mater. Eng., 2(1),53-64. https://doi.org/10.12989/cme.2020.2.1.053.
  44. Singh, A. and Kumari, P. (2020), "Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach", Adv. Comput. Design., 5(1), 55-89. https://doi.org/10.12989/acd.2020.5.1.055.
  45. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. http://dx.doi.org/10.1016/j.compstruct.2012.11.018.
  46. Szekrenyes, A. (2018), "The role of transverse stretching in the delamination fracture of softcore sandwich plates", Appl. Math. Model., 63, 611-632. doi:10.1016/j.apm.2018.07.014.
  47. Tan, P., Nguyen-Thanh, N. and Zhou, K. (2017), "Extended isogeometric analysis based on Bezier extraction for an FGM plate by using the two-variable refined plate theory", Theor. Appl. Fracture Mech., 89, 127-138. doi:10.1016/j.tafmec.2017.02.002.
  48. Tan, P., Nguyen-Thanh, N., Rabczuk, T. and Zhou, K. (2018), "Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach", Compos. Struct., 198, 35- 50. doi:10.1016/j.compstruct.2018.05.012.
  49. Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N. and Rabczuk, T. (2015), "Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory", Mech. Adv. Mater. Struct., 22(6), 451-469. doi:10.1080/15376494.2013.779050.
  50. Tornabene, F. and Brischetto, S. (2018), "3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells", Thin-Wall. Struct., 129, 94-124. doi:10.1016/j.tws.2018.03.021.
  51. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 109963621769362. doi:10.1177/1099636217693623.
  52. Tossapanon, P. and Wattanasakulpong, N. (2017), "Flexural vibration analysis of functionally graded sandwich plates resting on elastic foundation with arbitrary boundary conditions: Chebyshev collocation technique", J. Sandw. Struct. Mater., 109963621773600. doi:10.1177/1099636217736003.
  53. Yoosefian, A.R., Golmakani, M.E. and Sadeghian, M. (2019), "Nonlinear bending of functionally graded sandwich plates under mechanical and thermal load", Communications in Nonlinear Science and Numerical Simulation., 105161. doi:10.1016/j.cnsns.2019.105161.
  54. Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.

Cited by

  1. Nonlinear Static Bending and Free Vibration Analysis of Bidirectional Functionally Graded Material Plates vol.2020, 2020, https://doi.org/10.1155/2020/8831366
  2. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  3. Geometrical Influences on the Vibration of Layered Plates vol.2021, 2020, https://doi.org/10.1155/2021/8843358
  4. Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2020, https://doi.org/10.1155/2021/9983024
  5. Study on the Dynamic Performance of Locally Resonant Plates with Elastic Unit Cell Edges vol.2021, 2021, https://doi.org/10.1155/2021/5541052
  6. Analysis of the Vibration of the Ground Surface by Using the Layered Soil: Viscoelastic Euler Beam Model due to the Moving Load vol.2021, 2020, https://doi.org/10.1155/2021/6619197
  7. Influences of Two Calculation Methods about Dynamic Tension on Vibration Characteristics of Cable-Bridge Coupling Model vol.2021, 2020, https://doi.org/10.1155/2021/6681954
  8. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.141
  9. Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain vol.77, pp.3, 2020, https://doi.org/10.12989/sem.2021.77.3.315
  10. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175
  11. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  12. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281
  13. A five-variable refined plate theory for thermal buckling analysis of composite plates vol.3, pp.2, 2020, https://doi.org/10.12989/cme.2021.3.2.135
  14. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2020, https://doi.org/10.12989/anr.2021.11.1.055
  15. Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.593