과제정보
This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (D-296-135-1440). The authors, therefore, gratefully acknowledge DSR technical and financial support.
참고문헌
- Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
- Agwa, M.A. and Eltaher, M.A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9.
- Akbas, S.D. (2015), "Free vibration and bending of functionally graded beams resting on elastic foundation", Research on Engineering Structures and Materials, 1(1), 25-37. http://dx.doi.org/10.17515/resm2015.03st0107
- Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2017b), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
- Akbas, S.D. (2017c), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
- Akbas, S.D. (2017d), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
- Akbas, S.D. (2018c), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013
- Akbas, S.D. (2019a), "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328
- Akbas, S.D. (2019b), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. https://doi.org/10.12989/csm.2019.8.3.259.
- Akbas, S.D. (2019c), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. with Comput., https://doi.org/10.1007/s00366-020-01070-3.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi:10.1016/j.apm.2010.07.006.
- Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.
- Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123, 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057.
- Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Dynamic analysis of layered functionally graded viscoelastic deep beams with different boundary conditions due to a pulse load", Int. J. Appl. Mech., https://doi.org/10.1142/S1758825120500556.
- Bambaeechee, M. (2019), "Free vibration of AFG beams with elastic end restraints", Steel Compos. Struct., 33(3), 403-432. https://doi.org/10.12989/scs.2019.33.3.403.
- Barretta, R., Canadija, M., Feo, L., Luciano, R., de Sciarra, F.M., and Penna, R. (2018), "Exact solutions of inflected functionally graded nano-beams in integral elasticity", Compos. Part B: Eng., 142, 273-286. https://doi.org/10.1016/j.compositesb.2017.12.022.
- Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
- Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. https://doi.org/10.12989/scs.2016.20.1.205.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Mathematics Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013a), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030. .
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013b), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013c), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014a), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
- Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014b), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.
- Eltaher, M.A. and Agwa, M.A. (2016), "Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model", Sensor. Actuat. A: Phys., 246, 9-17. https://doi.org/10.1016/j.sna.2016.05.009.
- Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016a), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. ttps://doi.org/10.1016/j.apm.2015.11.026.
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016b), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51. https://doi.org/10.12989/anr.2016.4.1.051.
- Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016c). "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013.
- Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018a), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.
- Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018b), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018c), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsystem Technologies, 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018d), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsystem Technologies, 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
- Emam, S.A., Eltaher, M.A., Khater, M.E. and Abdalla, W.S. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019a), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves in Random and Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019b), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039.
- Eltaher, M.A. and Mohamed, N.A. (2020a), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501.
- Eltaher, M.A. and Mohamed, N. (2020b), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
- Eltaher, M.A. and Mohamed, S.A. (2020c), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Compos. Struct., 35(4), 545-554. https://doi.org/10.12989/scs.2020.35.4.545.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
- Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.
- Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
- Gul, U. and Aydogdu, M. (2018), Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B: Eng., 137, 60-73. https://doi.org/10.1016/j.compositesb.2017.11.005.
- Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020a), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
- Hamed M.A., Abu-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020b), "Influence of Axial Load Function and Optimization on Static Stability of Sandwich Functionally Graded Beams with Porous Core", Eng. with Comput.. https://doi.org/10.1007/s00366-020-01023-w.
- Heydari, A. (2018), "Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., 28(5), 589-606. https://doi.org/10.12989/scs.2018.28.5.589 .
- Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067.
- Karami, B., Janghorban, M. and Rabczuk, T. (2020), "Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory", Compos. Part B: Eng., 182, 107622. https://doi.org/10.1016/j.compositesb.2019.107622.
- Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol. Int. J., 17(4), 279-283. https://doi.org/10.1016/j.jestch.2014.07.003.
- Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. http://dx.doi.org/10.1016/j.matdes.2016.12.061.
- Lee, J.C. and Ahn, S.H. (2018), "Bulk density measurement of porous functionally graded materials", Int. J. Precision Eng. Manufact., 19(1), 31-37. DOI: 10.1007/s12541-018-0004-4.
- Liu, H., Lv, Z. and Wu, H. (2019), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory", Compos. Struct., 214, 47-61. https://doi.org/10.1016/j.compstruct.2019.01.090.
- Matula, I., Dercz, G. and Barczyk, J. (2019), "Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications", Mater. Sci. Technol., 1-6. https://doi.org/10.1080/02670836.2019.1593603.
- Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019.72.4.513.
- Melaibari, A., Khoshaim, A. B., Mohamed, S.A. and Eltaher, M. A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (Eds.). (2013), "Functionally graded materials: design, processing and applications" (Vol. 5), Springer Science & Business Media.
- Mirzaei, M.M.H., Loghman, A. and Arefi, M. (2019), "Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory", Steel Compos. Struct., 30(6), 567-576. https://doi.org/10.12989/scs.2019.30.6.567.
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. with Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
- Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.
- Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P., Nguyen-Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Method. Appl. M., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002.
- Phung-Van, P., Ferreira, A.J.M., Nguyen-Xuan, H. and Wahab, M. A. (2017a), "An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates", Compos. Part B: Eng., 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012.
- Phung-Van, P., Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H. and Abdel-Wahab, M. (2017b), "Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads", Nonlinear Dynam., 87(2), 879-894. https://doi.org/10.1007/s11071-016-3085-6.
- Phung-Van, P., Thanh, C.L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892. https://doi.org/10.1016/j.compstruct.2018.06.087.
- Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B: Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036.
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.
- Rahmani, O., Hosseini, S.A.H., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607-20. https://doi.org/10.12989/scs.2018.26.5.607.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
- Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
- Shaat, M., Eltaher, M.A., Gad, A.I. and Mahmoud, F.F. (2013), "Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies", Int. J. Mech. Sci., 77, 356-364. https://doi.org/10.1016/j.ijmecsci.2013.04.015.
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
- Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.
- Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. https://doi.org/10.12989/sem.2018.66.1.085.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
- Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J. and Lee, J. (2018), "Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions", Aerosp. Sci. Technol., 79, 278-287. https://doi.org/10.1016/j.ast.2018.06.010.
- Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025.
- Thanh, C.L., Ferreira, A.J.M. and Wahab, M.A. (2019a), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin-Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427.
- Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019b), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Method. Appl. M., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
- Thanh, C.L., Tran, L.V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019c), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Method. Appl. M., 353, 253-276. https://doi.org/10.1016/j.cma.2019.05.002.
- Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen, H.X. and Abdel-Wahab, M. (2019d), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
- Trabelssi, M., El-Borgi, S., Ke, L. L., & Reddy, J. N. (2017), "Nonlocal free vibration of graded nanobeams resting on a nonlinear elastic foundation using DQM and LaDQM", Compos. Struct., 176, 736-747. https://doi.org/10.1016/j.compstruct.2017.06.010.
- Wang, Y.Q., Wan, Y.H. and Zhang, Y.F. (2017), "Vibrations of longitudinally traveling functionally graded material plates with porosities", Eur. J. Mech.-A/Solids, 66, 55-68. http://dx.doi.org/10.1016/j.euromechsol.2017.06.006.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
- Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.
- Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. 10.22059/JCAMECH.2019.291967.448.
- Zhang, Y. and Wang, J. (2017), "Fabrication of functionally graded porous polymer structures using thermal bonding lamination techniques", Procedia Manufact., 10, 866-875. https://doi.org/10.1016/j.promfg.2017.07.073.
- Zhao, X., Zheng, S. and Li, Z. (2020), "Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams", Thin-Wall. Struct., 151, 106754. https://doi.org/10.1016/j.tws.2020.106754.
피인용 문헌
- Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
- Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2020, https://doi.org/10.12989/scs.2021.38.5.583
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307
- A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers vol.79, pp.3, 2020, https://doi.org/10.12989/sem.2021.79.3.279
- Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697