References
- Abramowitz, M. and Stegun, I.A. (1964), Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series
- AISC Seismic Design Manual. 3rd Ed. Chicago, USA. American Institute of Steel Construction, Inc; 2018
- American Institute of Steel Construction, Inc. (AISC). (2016), Seismic Provisions for Structural Steel Buildings. ANSI/AISC Standard 341-16. AISC, Chicago, Illinois
- Astaneh-Asl, A., Cochran, M.L. and Sabelli, R. (2006), "Seismic Detailing of Gusset Plates for Special Concentrically Braced Frames", Structural Steel Educational Council- Steel TIPS.
- Barbagallo, F., Bosco, M., Marino, E.M. and Rossi, P.P. (2019), "Achieving a more effective concentric braced frame by the double-stage yield BRB", Eng. Struct., 186, 484-497. https://doi.org/10.1016/j.engstruct.2019.02.028.
- Bosco, M., Ghersi, A., Marino, E.M. and Rossi, P.P. (2014), "A capacity design procedure for columns of steel structures with diagonals braces", Open Constr. Build. Technol. J., 8, 196-207. DOI: 10.2174/1874836801408010196.
-
Bosco, M., Brandonisio, G., Marino, E.M., Mele, E. and De Luca, A. (2017), "
$\Omega$ * method: An alternative to Eurocode 8 procedure for seismic design of X-CBFs", J. Constr. Steel Res., 134, 135-147. https://doi.org/10.1016/j.jcsr.2017.03.014. - Chen, C.H. and Mahin, S.A. (2012), "Performance based seismic demand assessment of concentrically braced steel frame buildings. PEER report 2012/103", Pacific Earthquake Engineering Research Center, Headquarters at University of California, Berkeley, California.
- Costanzo, S., D'Aniello, M. and Landolfo, R. (2016), "Critical review of seismic design criteria for chevron concentrically braced frames: the role of the brace-intercepted beam", Ing. Sismica: Int. J. Earthq. Eng., 33(1-2), 72-89.
- Costanzo, S., D'Aniello and M. and Landolfo, R. (2017a), "Seismic design criteria for chevron CBFs: European vs North American codes (part-1)", J. Constr. Steel Res., 135, 83-96. http://dx.doi.org/10.1016/j.jcsr.2017.04.018.
- Costanzo, S., D'Aniello, M. and Landolfo, R. (2017b), "Seismic design criteria for chevron CBFs: Proposals for the next EC8 (part-2)", J. Constr. Steel Res., 138, 17-37. http://dx.doi.org/10.1016/j.jcsr.2017.06.028.
- Costanzo, S. and Landolfo, R. (2017), "Concentrically braced frames: European vs. North American seismic design provisions", Open Civil Eng. J., 11(Suppl-1, M11), 453-463. DOI: 10.2174/1874149501711010453.
- Costanzo, S., D'Aniello, M., Landolfo, R. and De Martino, A. (2018), "Critical discussion on seismic design criteria for cross concentrically braced frames", Ing. Sismica: International J. Earthq. Eng., 35(2), 23-36.
- Costanzo, S., D'Aniello, M. and Landolfo, R. (2019), "Proposal of design rules for ductile X-CBFs in the framework of Eurocode 8", Earthq. Eng. Struct D., 48(1), 124-151. https://doi.org/10.1002/eqe.3128.
- CSA. 2014. Design of Steel Structures, CSA-S16-14, Canadian Standards Association, Toronto, ON.
- D'Aniello, M., Costanzo, S. and Landolfo, R. (2015), "The influence of beam stiffness on seismic response of chevron concentric bracings", J. Constr. Steel Res., 112, 305-324. https://doi.org/10.1016/j.jcsr.2015.05.021.
- D'Aniello, M., La Manna Ambrosino, G., Portioli, F. and Landolfo, R. (2013), "Modelling aspects of the seismic response of steel concentric braced frames", Steel Compos. Struct., 15(5), 539-566. http://dx.doi.org/10.12989/scs.2013.15.5.539.
- D'Aniello, M., La Manna Ambrosino, G., Portioli, F. and Landolfo, R. (2015b), "The influence of out-of-straightness imperfection in Physical-Theory models of bracing members on seismic performance assessment of concentric braced structures", Struct. Des. Tall Spec. Build., 24(3), 176-197. https://doi.org/10.1002/tal.1160.
- Dicleli, M. and Calik, E.E. (2008), "Physical theory hysteretic model for steel braces", J. Struct. Eng.- ASCE, 134(7), 1215-1228. ttps://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1215).
- Elghazouli, A.Y. (2010), "Assessment of European seismic design procedures for steel framed structures", Bull. Earthq. Eng., 8, 65-89. https://doi.org/10.1007/s10518-009-9125-6.
- EN 1990 (2001), Eurocode 0: Basis of structural design.
- EN 1991-1-1 (2002), Eurocode 1: Actions on structures - Part 1-1: General actions -Densities, self-weight, imposed loads for buildings.
- EN 1993:1-1 (2005), Eurocode 3: design of steel structures - part 1-1: general rules and rules for buildings.
- EN 1994-1-1 (2004), Eurocode 4: Design of composite steel and concrete structures - Part 1.1: General rules and rules for buildings.
- EN 1998-1-1. (2005), Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings.
- Goggins, J.M., Broderick, B.M. and Elghazouli, A.Y. and Lucas, A.S. (2006), "Behaviour of tubular steel members under cyclic axial loading", J. Constr. Steel Res., 62(1-2), 121-31. https://doi.org/10.1016/j.jcsr.2005.04.012.
- Hsiao, P., Lehman, D. and Roeder, C. (2012), "Improved analytical model for special concentrically braced frames", J. Constr. Steel Res., 73, 80-94. https://doi.org/10.1016/j.jcsr.2012.01.010.
- Hsiao, P.C., Lehman, D.E. and Roeder, C.W. (2013), "Evaluation of the response modification coefficient and collapse potential of special concentrically braced frames", Earthq. Eng. Struct. D., 42, 1547-1564. doi:10.1002/ eqe.228.
- Khatib, I.F., Mahin, S.A. and Pister, K.S. (1998), "Seismic behavior of concentrically braced steel frames", Report UCB/EERC-88/01. Earthquake Engineering Research Center, University of California, Berkeley, CA.
- Longo, A., Montuori, R. and Piluso, V. (2008), "Failure mode control of X-braced frames under seismic actions", J. Earth. Eng., 12, 728-759. https://doi.org/10.1080/13632460701572955.
- Longo, A., Montuori, R. and Piluso, V. (2015), "Seismic design of chevron braces coupled with MRF fail safe systems", Earthq. Struct., 8(5), 1215-1239. https://doi.org/10.12989/eas.2015.8.5.1215.
- Longo, A., Montuori, R. and Piluso, V. (2016), "Moment frames - concentrically braced frames dual systems: analysis of different design criteria", Struct. Infrastruct. Eng., 12(1),122-141. https://doi.org/10.1080/15732479.2014.996164.
- Marino, E.M. (2013), "A unified approach for the design of high ductility steel frames with concentric braces in the framework of Eurocode 8", Earthq. Eng. Struct. D., 43(1), 97-118. https://doi.org/10.1002/eqe.2334.
- Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending", Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads.
- Metelli, G. (2013), "Theoretical and experimental study on the cyclic behaviour of X braced steel frames", Eng. Struct., 46, 763-773. https://doi.org/10.1016/j.engstruct.2012.08.021.
- Seismosoft (2011), SeismoStruct - A computer program for static and dynamic nonlinear analysis of framed structures. Available from URL: www.seismosoft.com.
- Shen, J., Wen, R., Akbas, B., Doran, B. and Uckan, E. (2014), "Seismic demand on brace-intersected beams in two-story X-braced frames", Eng. Struct., 76, 295-312. https://doi.org/10.1016/j.engstruct.2014.07.022.
- Shen, J., Wen, R. and Akbas, B. (2015), "Mechanisms in Two-story X-braced Frames", J. Constr. Steel Res., 106, 258-277. https://doi.org/10.1016/j.jcsr.2014.12.014.
- Shen, J., Seker, O., Akbas, B., Seker, P., Seyedbabak, M. and Faytarouni, M. (2017), "Seismic performance of concentrically braced frames with and without buckling", Eng. Struct., 141, 461-481. https://doi.org/10.1016/j.engstruct.2017.03.043.
- Silva, A., Santos, L., Ribeiro, T. and Castro, J.M. (2018), "Improved seismic design of concentrically X-braced steel frames to Eurocode 8", J. Earthq. Eng., DOI: 10.1080/13632469.2018.1528912.
- Silva, A., Castro, J.M. and Monteiro, R. (2019), "Practical considerations on the design of concentrically-braced steel frames to Eurocode 8", J. Constr. Steel Res., 158, 71-85. https://doi.org/10.1016/j.jcsr.2019.03.011.
- Spacone, E., Ciampi, V. and Filippou, F.C., (1996), "Mixed formulation of nonlinear beam finite element", Comput. Struct., 58(1), 71-83. https://doi.org/10.1016/0045-7949(95)00103-N.
- Tremblay, R. and Tirca, L. (2003), "Behavior and design of multi-story zipper concentrically braced steel frames for the mitigation of soft-story response", Proceedings of the conference on behaviour of steel structures in seismic areas.
- Uriz, P. and Mahin, S.A. (2008), "Toward earthquake-resistant design of concentrically braced steel-frame structures". PEER rep no. 2008/08 Pacific Earthquake Engineering Research Centre, College of Engineering, Univ. of California, Berkley.
- Whitmore, R. (1952), "Experimental Investigation of Stresses in Gusset Plates", University of Tennessee, Tech. Rep. No. 16
- Wijesundara, K.K., Nascimbene, R. and Rassati, G.A. (2018), "Evaluation of the seismic performance of suspended zipper column concentrically braced steel frames", J. Constr. Steel Res., 150, 452-461. https://doi.org/10.1016/j.jcsr.2018.09.003.
- Yoo, J.H., Roeder, C.W. and Lehman, D.E. (2009), "Simulated behavior of multi-story X-braced frames", Eng. Struct., 31(1), 182-197. https://doi.org/10.1016/j.engstruct.2008.07.019.
Cited by
- Experimental investigation of a new lateral bracing system called OGrid under cyclic loading vol.35, 2022, https://doi.org/10.1016/j.istruc.2021.11.015