DOI QR코드

DOI QR Code

Susceptibility of Pine Wood Nematode Vectors to ULV Insecticides Sprayed from an Unmanned Helicopter

무인항공기를 활용한 유인항공기용 작물보호제에 대한 소나무재선충 매개충의 약제 감수성

  • Kim, Junheon (Forest Insect Pests and Diseases Division, National Institute of Forest Science) ;
  • Nam, Sangjune (Agricultural Corporation JejuChunji) ;
  • Song, Jinyoung (Agricultural Corporation JejuChunji)
  • 김준헌 (국립산림과학원 산림병해충연구과) ;
  • 남상준 (농업회사법인(주)제주천지) ;
  • 송진영 (농업회사법인(주)제주천지)
  • Received : 2020.01.28
  • Accepted : 2020.03.25
  • Published : 2020.06.01

Abstract

We assessed efficacy of spraying pesticides from an unmanned helicopter to control two insect species, Monochamus alternatus and M. saltuarius, which are vectors of pine wood nematodes. Control efficacy of thiacloprid FL (33×), acetamiprid ME (33×), and flupyradifurone SL (33×) was determined by placing caged insects in the canopy of pine trees (Pinus sp). Water-sensitive paper was used to record the spray pattern of pesticide droplets and the degree of coverage; furthermore, we investigated peripheral scattering due to spraying. The three pesticides showed > 96% control efficacy against the targeted vectors, and pesticide droplet spray patterns were similar. Peripheral scattering was observed up to 20 m in front and 10 m to the left, right, and behind the targeted area. The coverage index of all the directions at 5 and 10 m distance was 6-7 and 2, respectively.

본 연구에서는 소나무재선충을 매개하는 매개충 솔수염하늘소와 북방수염하늘소에 대하여 무인항공기(무인헬리콥터)를 이용하여 유인항공용 방제 약제의 약효 및 약해를 조사하였다. 약효는 소나무와 잣나무의 수간을 3등분한 곳에 대상 곤충을 케이지에 넣어 매달아 두어 살충효과를 조사하였다. 시험약제로는 티아클로프리드 액상수화제, 아세타미프리드 미탁제, 플루피라디퓨론 액제를 각각 33배로 희석하여 살포하였고, 감수지를 이용하여 살포 약제의 낙하입자를 측정하고 피복도를 조사하였다. 약제 살포에 의한 주변 비산거리 및 비산량을 조사하였다. 세 약제 모두 솔수염하늘소, 북방수염하늘소에 대하여 96%이상의 우수한 살충 효과를 보였다. 낙하입자 분석 결과 낙하입자는 균일한 양상을 보였다. 주변 비산 현상 분석 결과, 약제 살포시 무인헬리콥터 진행방향으로 20 m의 비산을 보였고, 좌우, 후방으로 10 m의 비산이 확인되었다. 낙하입자수에 의한 비산량 조사 결과, 모든 방향에서 5 m내에서 낙하입자지수 6-7이였고, 10 m지점에서는 낙하입자지수 2를 기록하였다.

Keywords

References

  1. American Society of Agricultural and Biological Engineers (ASABE) 2009. ASAE/ASABE S572.1 Spray Nozzle Classification by Droplet Spectra: St. Joseph, MI.
  2. Bell, H.C., Benavides, J.E., Montgomery, C.N., Navratil, J.R.E., Nieh, J.C., 2020. The novel butenolide pesticide flupyradifurone does not alter responsiveness to sucrose at either acute or chronic short-term field-realistic doses in the honey bee, Apis mellifera. Pest Manag. Sci. 76, 111-117. https://doi.org/10.1002/ps.5554
  3. European Food Safety Authority (EFSA) 2016. Peer review of the pesticide risk assessment of the active substance acetamiprid. EFSA J. 14, 4610. https://doi.org/10.2903/j.efsa.2016.4610.
  4. EU Commission, 2020. Renewal of approval: Neonicotinods. http://ec.europa.eu (accessed on 19. Jan. 2020).
  5. Kang, T.G., Lee, C.S., Choi, D.K., Jun, H.J., Koo, Y.M., Kang, T.H., 2010. Development of aerial application system attachable to unmanned helicopter - Basic spraying characteristics for aerial application system. J. Biosyst. Eng. 35, 215-223. https://doi.org/10.5307/JBE.2010.35.4.215
  6. Korea Forest Research Institute (KFRI) 2007. Annual report of monitoring for forest insect pest and diseases in Korea. Korea Forest Research Institute, Seoul, Korea.
  7. Kobayashi, F.,Yamane, A., Ikeda, T., 1984. The Japanese pine sawyer beetle as the vector of pine wilt disease. Annu. Rev. Entomol. 29, 115-135. https://doi.org/10.1146/annurev.en.29.010184.000555
  8. Korea Forest Service, 2015. Control Manual for Pine Wilt Disease. (amended on 25 Sep. 2017).
  9. Korea Forest Service, 2020. http://www.forest.go.kr/newkfsweb/html/HtmlPage.do?pg=/conser/conser_020103.html&mn=KFS_02_02_01_03 (accessed on 21 Jan 2020).
  10. Lee, S.M., Jung, Y.H., Yoo, E.J., 2018. Residual pattern of pesticide for aerial application in accordance with the corresponding PLS. National Institute of Forest Science, Seoul, Korea.
  11. Lim, S.-H., Song, B.-H., 2009. Measuring the characteristic of aerial spray by rotary wing. J. Korean Soc. Aviat. Aeronaut. 17, 46-51.
  12. Nauen, R., Jeschke, P., Velten, R., Beck, M.E., Ebbinghaus-Kintscher, U., Thielert, W., WOlfel, K., Hassa, M., Kunz, K., Raupach, G., 2015. Flupyradifurone: A brief profile of a new butenolide insecticide. Pest Manag. Sci. 71, 850-862. https://doi.org/10.1002/ps.3932
  13. Naves, P., Mota, M.M., Pires, J., Penas, A.C., Sousa, E., Bonifacio, L., Bravo, M.A., 2001. Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae) associated with Monochamus galloprovincialis (Coleoptera; Cerambycidae) in Portugal. Nematode 3, 89-91.
  14. Rural Development Administration (RDA) 2018. Registration Standard of Pesticide. Notification No. 2019-26.
  15. Rural Development Administration (RDA) 2020. Pesticide Information Service. http://pis.rda.go.kr/.
  16. Sato, H., Sakuyama, T., Kobayashi, M., 1987. Transmission of Bursaphelenchus xylophilus (STEINER et BUHRER) NICKLE (Nematoda, Aphelenchoididae) by Monochamus saltuarius (GEBLER) (Coleoptera, Cerambycidae). J. Jpn. For. Soc., 69, 492-496.
  17. TeeJet, 2020. banding nozzles. www.teejet.com (accessed on 21. Jan. 2020).
  18. Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G., Redhead, J., Ridding, L, Dean, H., Sleep, D., Henrys, P., Peyton, J., Hulmes, L., Saraspartak, M. Edwards, M., Gernersch, E., Knabe, S., Pywell, R.F., 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393-1395. https://doi.org/10.1126/science.aaa1190