DOI QR코드

DOI QR Code

Impact of DBPs on the fate of zebrafish; Behavioral and lipid profile changes

  • Yoon, Hyojik (Department of Environmental Engineering, Korea University) ;
  • Lim, Yunsu (BKT Co. Ltd.) ;
  • Maeng, Sungkyu (Department of Civil and Environmental Engineering, Sejong University) ;
  • Hong, Yongsuk (Department of Environmental Engineering, Korea University) ;
  • Byun, Seokjong (Department of Research and Development, Jeollanamdo Environmental Industries Promotion Institute) ;
  • Kim, Hyun-Chul (Research Institute for Advanced Industrial Technology, Korea University) ;
  • Kim, Byoungsoo (Department of Environmental Engineering, Korea University) ;
  • Kim, Sungpyo (Department of Environmental Engineering, Korea University)
  • 투고 : 2019.04.28
  • 심사 : 2020.11.27
  • 발행 : 2020.11.25

초록

In recent years, the generation of disinfectant by-products (DBPs) in drinking water system has been highlighted for their potential negative impact on humans. A commonly used disinfectant, chlorine, produces a by-product which is highly hazardous and a known carcinogen. This study investigated the toxic effects of DBPs from several organic matter as a function of contact time with chlorine-based disinfectants were investigated using zebrafish. The results indicated that the generation of DBPs was dependent on the composition of dissolved organic matter (DOM) in water. Suwannee river natural organic matter and experimental site water sample (complex DOM) were almost 2.5 times higher than that of a single dissolved organic matter, such as microcystin-LR (MCLR) at 120 min. The behavior of zebrafish was significantly affected by complex composition DOM. In vivo biomarker analysis result from lipid profile analysis, reaction in vivo showed different depending on the composition of the DOM. Through this study, the effect of DBPs were observed via lipid metabolic and movement changes in aquatic organisms can be considered as a new biomarker for the drinking water risk assessment.

키워드

과제정보

This work was supported by the Korea University Research Grant.

참고문헌

  1. Adema, D.M.M (1978), "Daphina magna as a test animal in acute and chronic toxicity tests", Hydrobiologia, 59, 125-134. https://doi.org/10.1007/BF00020773.
  2. Andrew, J.F., Feitz, T., David, W., Gary, J.J., Brace, H.B. and Philip, T.O (1999), "Photocatalytic degradation of the blue green algal toxin microcystin-LR in a natural organic aqueous matrix", Environ. Sci. Tech., 33(2), 243-249. https://doi.org/10.1021/es970952d
  3. Avdesh, A., Chen, M., Martin Iverson, M.T., Mondal, A., Ong, D., Rainey Smith, S., Taddei, K., Lardelli, M., Groth, D.M., Verdile, G. and Martins, R.N. (2012) "Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction", J. Visualized Exp., 69, 1-8. https://doi.org/10.3791/4196.
  4. Best, J., Eddy, F. and Codd, G. (2001), "Effects of purified microcystin-LR and cell extracts of Microcystis strains PCC 7813 and CYA 43 on cardiac function in brown trout (Salmo trutta) alevins", Fish Physiology Biochem., 24(3), 171-178, https://doi.org/10.1023/A:1014081827372.
  5. Bond, T., Goslan, E., Jefferson, B., Roddick, F., Fan, L. and Parsons, S. (2009), "Chemical and biological oxidation of NOM surrogates and effect on HAA formation", Water Res., 43(10), 2615-2622. https://doi.org/10.1016/j.watres.2009.03.036.
  6. Careau, V., Thomas, D., Humphries, M. and Reale, D. (2008), "Energy metabolism and animal personality", Oikos, 117(5), 641-653. https://doi.org/10.1111/j.0030-1299.2008.16513.x.
  7. Chad, L., Irwin, H. S., Katerine, H., Beate, R. (2007), "Estimated effects of disinfection by-products on preterm birth in a population served by a single water utility", Environ. Health Perspectives, 115(2), 290-295. https://doi.org/10.1289/ehp.9394.
  8. Danial L. H. (2002), Current Technology of Chlorine Analysis for Water and Wastewater, Hach, USA.
  9. Dawson, R.M. (1998), "Review article; The toxicology of microcystins". Toxicon, 36(7), 953-962. https://doi.org/10.1016/S0041-0101(97)00102-5.
  10. Ganesaratnam, K.B., Frank, S., Giovanna, S., Torsten, B., Ning, X., Kap, L., Roesline, G., Friedrich, S. and James, C.S. (2000), "Crystal structure and thermodynamic analysis of human brain fatty acid binding protein", J. Biological Chem., 275(35), 27045-27054. https://doi.org/10.1074/jbc.M003001200.
  11. Graham, J.L and Peter, D.C. (2007), "Animal models of human disease: zebrafish swim into view", Nature, 8, 353-367. https://doi.org/10.1038/nrg2091.
  12. Guanghui, H. and David, A.R. (2008), "DBP formation during chlorination and chloramination: Effect of reaction time, pH, dosage and temperature", Journal AWWA, 100(8), 82-95. https://doi.org/10.1002/j.1551-8833.2008.tb09702.x.
  13. Hu, J.Y., Wang, Z.S., Ng, W.J. and Ong, S.L. (1999), "Disinfection by products in water produced by ozonation and chlorination", Environ. Monitoring Assessment, 59, 81-93. https://doi.org/10.1023/A:1006076204603.
  14. Jinfeng, L., Tao, Z., Jun, M. and Zhonglin, C. (2009), "Evaluation of disinfection by-products formation during chlorination and chloramination of dissolve natural organic matter fractions isolated from a filtered river water", J. Hazardous Mater., 162(1), 140-145. https://doi.org/10.1016/j.jhazmat.2008.05.058.
  15. Jingyun, F., Xin, Y., Jun, M., Chii, S. and Quan, Z. (2010), "Characterization of algal organic matter and formation of DBPs from chlor(am)ination", Water Res., 44(20), 5897-5906. https://doi.org/10.1016/j.watres.2010.07.009.
  16. Kim, S.Y., Hur, W., Choi, J.E., Kim, D., Wang, J.S., Yoon, H.Y., Piao, L.S. and Yoon, S.K. (2009), "Functional characterization of human oncoprotein gankyrin in Zebrafish", Exp. Molecular Medicine, 41(1), 8-16. https://doi.org/10.3858/emm.2009.41.1.002.
  17. Koolhaas, J.M., de Boer, S.F., Buwalda, B. and van Reenenm K. (2007), "Individual variation in coping with stress: a multidimensional approach of ultimate and proximate mechanisms", Brain, Behavior Evolution, 70(4), 218-226, https://doi.org/10.1159/000105485.
  18. Kornegay, B.H., Kornegay, K.J. and Torres, E. (2000), Natural Organic Matter In Drinking Water: Recommendations to Water Utilities, American Water Works Association, USA.
  19. Krishna, G., Sushree, S.T., Jean, L.B. and Shashi, P.D. (2007), "Chlorination byproducts, their toxicodynamics and removal from drinking water", J. Hazardous Mater., 140(1-2), 1-6. https://doi.org/10.10/j.jhazmat.2006.10.063.
  20. Lawrence, C. (2007), "The husbandry of zebrafish (Danio rerio): A review", Aquaculture, 269(1-4), 1-20, https://doi.org/10.1016/j.aquaculture.2007.04.077.
  21. Lionel H., Gretchen, O., Urs, G., Stephanie, R, P., Keith, C. and Gayle, N. (2006), "Differences in the chlorine reactivity of four microcystin analogues", Water Res., 40(6), 1200-1209. https://doi.org/10.1016/j.watres.2006.01.030.
  22. Loris, P., Mariacristina, G., Ornella, V., Claudia, I., Federica, A., Caterina, P., Anna, S. S., Michele, M. and Carla, F. (2017), "Functional lipidomics in patients on home parenteral nutrition: Effect of lipid emulsions", World J. Gastroenterology, 23(25), 4604-4614. https://doi.org/10.3748/wjg.v23.i25.4604.
  23. Luiz F. Z., Andre, H.R., Ilda A.S.T. and Julio C.R. (2006), "A structure conformation study of aquatic humic acid", J. Brazilian Chem. Soc., 17(5), 1014-1019. http://dx.doi.org/10.1590/S0103-50532006000500028
  24. Malgorzata, K. K and Agnieszka, U. (2012), "Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration", Membr. Water Treat., 3(4), 211-219. https://doi.org/10.12989/mwt.2012.3.4.211.
  25. Michael, G., Leanne, C.P., Ernest, W., Allen, P., Feng, C., Alexander, R., Norbert, H. and Philippe, S.K. (2019), "The chemodiversity of algal dissolved organic matter from lysed Microcystis aeruginosa cells and its ability to form disinfection by-products during chlorination", Water Res., 155, 300-309, https://doi.org/10.1016/j.watres.2019.02.030.
  26. Mingzhe, Y., Yan, C., Yingying, H. and Weiqun, L. (2018), "Behavioral and metabolic phenotype indicate personality in zebrafish (Danio rerio)". Frontiers in Physiology, 9, 1-10. https://doi.org/10.3389/fphys.2018.00653.
  27. Montserrat, F. (2009), "Freshwaters: Which NOM matters?", Environ. Chem. Lett., 7, 21-35. https://doi.org/10.1007/s10311-008-0158-x.
  28. Ned, B., James, C.C., Regina, L. and Barbara, W. (2009), Microcystins: A Brief Overview of Their Toxicity and Effects, With Special Reference to Fish, Wildlife and Livestock, Office of Environmental Health Hazard Assessment, CA, USA.
  29. Noh, J.H., Lee, S.H., Choi, J.W. and Maeng, S.K. (2018), "Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag", Membr. Water Treat., 9(3), 181-188. https://doi.org/10.12989/mwt.2018.9.3.181.
  30. Park, H.K., Lee, J.J., Park, J.H., Yoon, J.S., Lee, H.J., Lee, I.J., Moon, J.S., Lee, J.A., Yoo, K.A., Hwang, D.J., Lee, J.B., Lee, C.H., Kim, H.B. and Kwon, Y.H. (2008), "Study on the Alert criteria of harmful algal bloom alert system", No. N033717; National Institute of Environmental Research, Republic of Korea.
  31. Reale, D., Reader, S.M., Sol, D., McDougall, P.T. and Dingemanse, N.J. (2007), "Integrating animal temperament within ecology and evolution", Biological Reviews of the Cambridge Philosophical Society, 82(2), 291-318. https://doi.org/10.1111/j.1469-185X.2007.00010.x.
  32. Rupia, E.J., Binnind, S.A., Roche, D.G. and Lu, W. (2016), "Fight-flight or freeze hide? Personality and metabolic phenotype mediate physiological defense responses in flatfish", J. Animal Ecology, 85(4), 927-937. https://doi.org/10.1111/1365-2656.12524.
  33. Ryan, B., Medriano, C.D., Cho, Y., Kim, H., Chung, I.Y., Seok, K.S., Song, K.G., Hong, S.W., Park, Y. and Kim, S (2017), "Sub-lethal pharmaceutical hazard tracking in adult zebrafish using untargeted LC-MS environmental metabolomics", J. Hazardous Mater., 339, 63-72, http://dx.doi.org/10.1016/j.jhazmat.2017.06.009.
  34. Sanly., Lim. M., Chiang, K., Amal, R., Fabris, R., Chow, C. and Drikas, M. (2007), "A study on the removal of humic acid using advanced oxidation process. Separation Science and Technology", Separation Sci. Technol., 42(7), 1391-1404. https://doi.org/10.1080/01496390701289799.
  35. Seung, J.H. (2015), "Oocyte Maturation Process of Zebrafish (Danio rerio), an Emerging Animal Model", J. Life Sci., 25(10), 1184-1195. http://dx.doi.org/10.5352/JLS.2015.25.10.1184.
  36. Shiu, Y.H., Juanit, L.T., Yun, D., Evelyn, S., Robert, A.D., Steven, A.F. (2004), "Lipid metabolism in zebrafish". Methods Cell Biology, 76, 87-108. https://doi.org/10.1016/S0091-679X(04)76006-9.
  37. Simopoulos, A.P. (2002), "The importance of the ratio of omega-6/omega-3 essential fatty acids", Biomedicine Pharmacotherapy, 56(8), 365-379. https://doi.org/10.1016/S0753-3322(02)00253-6.
  38. Steve, E. H. (2009), "Chlorination disinfection by-products, public health risk tradeoffs and me", Water Res., 43(8), 2057-2092. https://doi.org/10.1016/j.watres.2009.02.011.
  39. Sun, Y. X., Wu, Q. Y., Hu, H. Y. and Tian, J. (2009), "Effect of ammonia on the formation of THMs and HAAs in secondary effluent chlorination", Chemosphere, 76(5), 631-637. https://doi.org/10.1016/j.chemosphere.2009.04.041.
  40. Susan, D.R., Francesca, F., J. Jackson, E., F. Gene, C., Katherine, M.B., John, J.E., Benjamin, C.B., Lalith, K.S., Tim, J.W., George, W.L., A. Bruce, M., Richard, J.M., Elizabeth, D.W. and Michael, J.P. (2008), "Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water", Environ. Sci. Technol., 42(22), 8330-8338. https://doi.org/10.1021/es801169k.
  41. Taha, F.M. and Doanh, V. (2000), "The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant", J. Hazardous Mater., 74(3), 133-147. https://doi.org/10.1016/S0304-3894(99)00190-9.
  42. Takeshi, W. (1993), "Importance of Docosahexaenoic Acid in Marine Larval Fish", J. World Aquaculture Soc., 24(2), 152-161. https://doi.org/10.1111/j.1749-7345.1993.tb00004.x.
  43. Thurman, E. (1985), Organic Geochemistry of Natural Waters, Kluwer Academic Publishers, The Netherlands.
  44. Trang, V. N., Phuong, L., Dan, N., Thanh, B. and Visvanathan, C. (2012), "Assessment on the trihalomethanes formation potential of Tan Hiep water treatment plant", J. Water Sustainability, 2(1), 43-53.
  45. Uyguner, D.C. and Bekbolet, M. (2011), "Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation", Chemosphere, 84(8), 1009-1031. https://doi.org/10.1016/j.chemosphere.2011.05.003.
  46. Xing-Fang, L. and William A.M. (2018), "Drinking water disinfection byproducts (DBPs) and human health effects: Multidisciplinary challenges and opportunities", Environ. Sci. Technol., 52(4), 1681-1689. http://doi.org/10.1021/acs.est.7b05440.
  47. Xing, Y. (2010), "Characterization of dissolved organic carbon in prairie surface waters using fourier transform infrared spectroscopy", M.Sc. Dissertation, University of Saskatchewan, Saskatoon.
  48. Yansen, Z., Yisheng, S., Naiyun, G., Wenhai, C. and Ziwei, S. (2016), "Removal of microcystin-LR by free chlorine: Identify of transformation products and disinfection by-products formation", Chem. Eng. J., 287(1), 189-195. https://doi.org/10.1016/j.cej.2015.10.111.
  49. Yongsoon, P. (2010), "Omega-3 Index as a Risk Factor for Cardiovascular Disease and Its Application to Korean Population", J. Obesity Metabolic Syndrome, 19(1), 1-8.
  50. Yushi, H., Dayanyhi, N. and Donale, W. (2015), "Enabling rapid behavioral ecotoxicity studies using an integrated lab-on-a-chip systems", Proceedings of SPIE, 9668, https://doi.org/10.1117/12.2202394.

피인용 문헌

  1. Toxicity impact of hydrogen peroxide on the fate of zebrafish and antibiotic resistant bacteria vol.302, pp.no.pb, 2022, https://doi.org/10.1016/j.jenvman.2021.114072